Suppr超能文献

最大铺展时液滴撞击的能量平衡:数值模拟与实验

Energy Budget of Liquid Drop Impact at Maximum Spreading: Numerical Simulations and Experiments.

作者信息

Lee Jae Bong, Derome Dominique, Dolatabadi Ali, Carmeliet Jan

机构信息

Chair of Building Physics, ETH Zurich, Stefano-Franscini-Platz 5, CH-8093 Zürich, Switzerland.

Laboratory for Multiscale Studies for Building Physics, Swiss Federal Laboratories for Materials Science and Technology, Empa, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland.

出版信息

Langmuir. 2016 Feb 9;32(5):1279-88. doi: 10.1021/acs.langmuir.5b03848. Epub 2016 Jan 25.

Abstract

The maximum spreading of an impinging droplet on a rigid surface is studied for low to high impact velocity, until the droplet starts splashing. We investigate experimentally and numerically the role of liquid properties, such as surface tension and viscosity, on drop impact using three liquids. It is found that the use of the experimental dynamic contact angle at maximum spreading in the Kistler model, which is used as a boundary condition for the CFD-VOF calculation, gives good agreement between experimental and numerical results. Analytical models commonly used to predict the boundary layer thickness and time at maximum spreading are found to be less correct, meaning that energy balance models relying on these relations have to be considered with care. The time of maximum spreading is found to depend on both the impact velocity and surface tension, and neither dependency is predicted correctly in common analytical models. The relative proportion of the viscous dissipation in the total energy budget increases with impact velocity with respect to surface energy. At high impact velocity, the contribution of surface energy, even before splashing, is still substantial, meaning that both surface energy and viscous dissipation have to be taken into account, and scaling laws depending only on viscous dissipation do not apply. At low impact velocity, viscous dissipation seems to play an important role in low-surface-tension liquids such as ethanol.

摘要

研究了低至高冲击速度下撞击液滴在刚性表面上的最大铺展情况,直至液滴开始飞溅。我们使用三种液体,通过实验和数值方法研究了液体性质(如表面张力和粘度)对液滴撞击的作用。结果发现,在用作CFD-VOF计算边界条件的基斯特勒模型中,使用最大铺展时的实验动态接触角,实验结果与数值结果吻合良好。用于预测最大铺展时边界层厚度和时间的解析模型被发现不太准确,这意味着依赖这些关系的能量平衡模型必须谨慎考虑。发现最大铺展时间既取决于冲击速度,也取决于表面张力,而在常见的解析模型中,这两种依赖性都没有得到正确预测。相对于表面能,总能量预算中粘性耗散的相对比例随冲击速度增加。在高冲击速度下,即使在飞溅之前,表面能的贡献仍然很大,这意味着表面能和粘性耗散都必须考虑在内,仅依赖粘性耗散的标度律并不适用。在低冲击速度下,粘性耗散似乎在乙醇等低表面张力液体中起重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验