Chin Ai Lin, Carrick Jesse D
Department of Chemistry, Tennessee Technological University , 55 University Drive, Cookeville, Tennessee 38501, United States.
J Org Chem. 2016 Feb 5;81(3):1106-15. doi: 10.1021/acs.joc.5b02662. Epub 2016 Jan 22.
Remediation or transmutation of spent nuclear fuel obtained as a function of energy production and legacy waste remains a significant environmental concern. Substantive efforts over the last three decades have focused on the potential of soft-Lewis basic complexants for the chemoselective separation of trivalent actinides from lanthanides in biphasic solvent systems. Recent efforts in this laboratory have focused on the concept of modularity to rapidly prepare complexants and complexant scaffolds not easily accessible via traditional linear methods in a convergent manner to better understand solubility and complexation structure/activity function in process-relevant solvents. The current work describes an efficient method for the construction of diversified complexants through multi-Suzuki-Miyaura cross-coupling of bromoheteroarenes with organotrifluoroborates affording efficient access to 22 novel materials in 43-99% yield over two, three, or four cross-couplings on the same scaffold. Optimization of the catalyst/ligand system, application, and limitations are reported herein.
根据能源生产和遗留废物情况对乏核燃料进行修复或嬗变仍然是一个重大的环境问题。过去三十年的大量努力集中在软路易斯碱络合剂在双相溶剂体系中对三价锕系元素与镧系元素进行化学选择性分离的潜力上。本实验室最近的工作集中在模块化概念上,以便以收敛的方式快速制备通过传统线性方法不易获得的络合剂和络合剂支架,从而更好地理解在与工艺相关的溶剂中的溶解性和络合结构/活性功能。当前的工作描述了一种通过溴代杂芳烃与有机三氟硼酸盐的多铃木-宫浦交叉偶联来构建多样化络合剂的有效方法,在同一支架上通过两次、三次或四次交叉偶联以43-99%的产率有效获得22种新型材料。本文报道了催化剂/配体体系的优化、应用及局限性。