Suppr超能文献

用于亚单位疫苗的聚乳酸-羟基乙酸共聚物微粒递送系统:将颗粒特性与免疫原性联系起来。

PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity.

作者信息

Silva A L, Soema P C, Slütter B, Ossendorp F, Jiskoot W

机构信息

a Division of Drug Delivery Technology , Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands.

b Intravacc (Institute for Translational Vaccinology) , Bilthoven , The Netherlands.

出版信息

Hum Vaccin Immunother. 2016 Apr 2;12(4):1056-69. doi: 10.1080/21645515.2015.1117714. Epub 2016 Jan 11.

Abstract

Among the emerging subunit vaccines are recombinant protein- and synthetic peptide-based vaccine formulations. However, proteins and peptides have a low intrinsic immunogenicity. A common strategy to overcome this is to co-deliver (an) antigen(s) with (an) immune modulator(s) by co-encapsulating them in a particulate delivery system, such as poly(lactic-co-glycolic acid) (PLGA) particles. Particulate PLGA formulations offer many advantages for antigen delivery as they are biocompatible and biodegradable; can protect the antigens from degradation and clearance; allow for co-encapsulation of antigens and immune modulators; can be targeted to antigen presenting cells; and their particulate nature can increase uptake and cross-presentation by mimicking the size and shape of an invading pathogen. In this review we discuss the pros and cons of using PLGA particulate formulations for subunit vaccine delivery and provide an overview of formulation parameters that influence their adjuvanticity and the ensuing immune response.

摘要

新兴的亚单位疫苗包括基于重组蛋白和合成肽的疫苗制剂。然而,蛋白质和肽的固有免疫原性较低。克服这一问题的常见策略是通过将抗原与免疫调节剂共同包裹在颗粒递送系统(如聚乳酸-乙醇酸共聚物(PLGA)颗粒)中,来共同递送抗原。颗粒状PLGA制剂在抗原递送方面具有许多优势,因为它们具有生物相容性和可生物降解性;可以保护抗原不被降解和清除;允许抗原和免疫调节剂共同包裹;可以靶向抗原呈递细胞;并且它们的颗粒性质可以通过模仿入侵病原体的大小和形状来增加摄取和交叉呈递。在这篇综述中,我们讨论了使用PLGA颗粒制剂进行亚单位疫苗递送的优缺点,并概述了影响其佐剂性和后续免疫反应的制剂参数。

相似文献

1
PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity.
Hum Vaccin Immunother. 2016 Apr 2;12(4):1056-69. doi: 10.1080/21645515.2015.1117714. Epub 2016 Jan 11.
2
Functional characterization of biodegradable nanoparticles as antigen delivery system.
J Exp Clin Cancer Res. 2015 Oct 6;34:114. doi: 10.1186/s13046-015-0231-9.
4
Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations.
Adv Drug Deliv Rev. 2011 Sep 10;63(10-11):943-55. doi: 10.1016/j.addr.2011.05.021. Epub 2011 Jun 6.
7
"Pathogen-mimicking" nanoparticles for vaccine delivery to dendritic cells.
J Immunother. 2007 May-Jun;30(4):378-95. doi: 10.1097/CJI.0b013e31802cf3e3.
9
Particulate vaccines: on the quest for optimal delivery and immune response.
Drug Discov Today. 2011 Jul;16(13-14):569-82. doi: 10.1016/j.drudis.2011.04.006. Epub 2011 May 4.
10
Cross-Linked Peptide Nanoclusters for Delivery of Oncofetal Antigen as a Cancer Vaccine.
Bioconjug Chem. 2018 Mar 21;29(3):776-785. doi: 10.1021/acs.bioconjchem.8b00079. Epub 2018 Feb 13.

引用本文的文献

1
Research on inner membrane complex protein 1: a novel nanovaccines against Toxoplasma gondii.
BMC Vet Res. 2025 Aug 23;21(1):521. doi: 10.1186/s12917-025-04961-z.
2
PLGA nanoparticles as an efficient carrier in GAP45: a more effective vaccine against acute toxoplasmosis than traditional ones.
Front Immunol. 2025 Jun 23;16:1600399. doi: 10.3389/fimmu.2025.1600399. eCollection 2025.
3
Nanotechnology-driven advances in intranasal vaccine delivery systems against infectious diseases.
Front Immunol. 2025 May 9;16:1573037. doi: 10.3389/fimmu.2025.1573037. eCollection 2025.
5
Nanoimmunotherapy: the smart trooper for cancer therapy.
Explor Target Antitumor Ther. 2025 Apr 10;6:1002308. doi: 10.37349/etat.2025.1002308. eCollection 2025.
7
Breaking barriers: Smart vaccine platforms for cancer immunomodulation.
Cancer Commun (Lond). 2025 May;45(5):529-571. doi: 10.1002/cac2.70002. Epub 2025 Feb 3.
8
Vaccine Strategies Against RNA Viruses: Current Advances and Future Directions.
Vaccines (Basel). 2024 Nov 28;12(12):1345. doi: 10.3390/vaccines12121345.
9
A Versatile, Low-Cost Modular Microfluidic System to Prepare Poly(Lactic-co-Glycolic Acid) Nanoparticles With Encapsulated Protein.
Pharm Res. 2024 Dec;41(12):2347-2361. doi: 10.1007/s11095-024-03792-1. Epub 2024 Nov 27.
10
A Polysaccharide-Based Oral-Vaccine Delivery System and Adjuvant for the Influenza Virus Vaccine.
Vaccines (Basel). 2024 Sep 29;12(10):1121. doi: 10.3390/vaccines12101121.

本文引用的文献

2
Recent advances in peptide-based subunit nanovaccines.
Nanomedicine (Lond). 2014 Dec;9(17):2657-69. doi: 10.2217/nnm.14.187.
3
CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses.
Biomaterials. 2015 Feb;40:88-97. doi: 10.1016/j.biomaterials.2014.10.053. Epub 2014 Nov 26.
4
Immunoadjuvant activity of the nanoparticles' surface modified with mannan.
Nanotechnology. 2014 Sep 5;25(35):355101. doi: 10.1088/0957-4484/25/35/355101. Epub 2014 Aug 13.
5
Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: a comparative study.
J Control Release. 2014 Oct 28;192:209-18. doi: 10.1016/j.jconrel.2014.07.040. Epub 2014 Jul 25.
6
New poly(lactic-co-glycolic acid) derivatives: Modular polymers with tailored properties.
Drug Discov Today Technol. 2005 Spring;2(1):7-13. doi: 10.1016/j.ddtec.2005.05.017.
7
Efficient induction of antitumor immunity by synthetic toll-like receptor ligand-peptide conjugates.
Cancer Immunol Res. 2014 Aug;2(8):756-64. doi: 10.1158/2326-6066.CIR-13-0223. Epub 2014 Apr 21.
8
Targeted delivery of α-galactosylceramide to CD8α+ dendritic cells optimizes type I NKT cell-based antitumor responses.
J Immunol. 2014 Jul 15;193(2):961-9. doi: 10.4049/jimmunol.1303029. Epub 2014 Jun 9.
9
Immune responses to vaccines involving a combined antigen-nanoparticle mixture and nanoparticle-encapsulated antigen formulation.
Biomaterials. 2014 Jul;35(23):6086-97. doi: 10.1016/j.biomaterials.2014.04.022. Epub 2014 Apr 26.
10
PLGA micro and nanoparticles in delivery of peptides and proteins; problems and approaches.
Pharm Dev Technol. 2015 Jun;20(4):385-93. doi: 10.3109/10837450.2014.882940. Epub 2014 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验