Emons Wilco H M, Sijtsma Klaas, Meijer Rob R
Multivariate Behav Res. 2004 Jan 1;39(1):1-35. doi: 10.1207/s15327906mbr3901_1.
The person-response function (PRF) relates the probability of an individual's correct answer to the difficulty of items measuring the same latent trait. Local deviations of the observed PRF from the expected PRF indicate person misfit. We discuss two new approaches to investigate person fit. The first approach uses kernel smoothing to estimate continuous PRF estimates. Graphical displays of PRFs were used to localize and diagnose misfit. The second approach approximates the PRF by a logistic regression model. Hypothesis tests on the regression parameters were used to detect certain types of misfit. A simulation study was conducted to investigate the Type I error rates and the detection rates of the regression approach.
人反应函数(PRF)将个体正确回答的概率与测量相同潜在特质的项目难度联系起来。观察到的PRF与预期PRF的局部偏差表明人不匹配。我们讨论了两种研究人匹配度的新方法。第一种方法使用核平滑来估计连续的PRF估计值。PRF的图形显示用于定位和诊断不匹配。第二种方法通过逻辑回归模型近似PRF。对回归参数进行假设检验以检测某些类型的不匹配。进行了一项模拟研究以调查回归方法的I型错误率和检测率。