Rash John E, Vanderpool Kimberly G, Yasumura Thomas, Hickman Jordan, Beatty Jonathan T, Nagy James I
Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado; and.
Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado;
J Neurophysiol. 2016 Apr;115(4):1836-59. doi: 10.1152/jn.01077.2015. Epub 2016 Jan 13.
Saltatory conduction in mammalian myelinated axons was thought to be well understood before recent discoveries revealed unexpected subcellular distributions and molecular identities of the K(+)-conductance pathways that provide for rapid axonal repolarization. In this study, we visualize, identify, localize, quantify, and ultrastructurally characterize axonal KV1.1/KV1.2 channels in sciatic nerves of rodents. With the use of light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling electron microscopy, KV1.1/KV1.2 channels are localized to three anatomically and compositionally distinct domains in the internodal axolemmas of large myelinated axons, where they form densely packed "rosettes" of 9-nm intramembrane particles. These axolemmal KV1.1/KV1.2 rosettes are precisely aligned with and ultrastructurally coupled to connexin29 (Cx29) channels, also in matching rosettes, in the surrounding juxtaparanodal myelin collars and along the inner mesaxon. As >98% of transmembrane proteins large enough to represent ion channels in these specialized domains, ∼500,000 KV1.1/KV1.2 channels define the paired juxtaparanodal regions as exclusive membrane domains for the voltage-gated K(+)conductance that underlies rapid axonal repolarization in mammals. The 1:1 molecular linkage of KV1 channels to Cx29 channels in the apposed juxtaparanodal collars, plus their linkage to an additional 250,000-400,000 Cx29 channels along each inner mesaxon in every large-diameter myelinated axon examined, supports previously proposed K(+)conductance directly from juxtaparanodal axoplasm into juxtaparanodal myeloplasm in mammalian axons. With neither Cx29 protein nor myelin rosettes detectable in frog myelinated axons, these data showing axon-to-myelin linkage by abundant KV1/Cx29 channels in rodent axons support renewed consideration of an electrically active role for myelin in increasing both saltatory conduction velocity and maximum propagation frequency in mammalian myelinated axons.
在最近的发现揭示了为轴突快速复极化提供支持的钾离子传导途径出人意料的亚细胞分布和分子特性之前,人们认为对哺乳动物有髓轴突中的跳跃传导已经有了很好的理解。在本研究中,我们对啮齿动物坐骨神经中的轴突KV1.1/KV1.2通道进行了可视化、识别、定位、定量和超微结构表征。通过使用光学显微镜免疫细胞化学和冷冻断裂复制品免疫金标记电子显微镜,KV1.1/KV1.2通道定位于大型有髓轴突节间轴膜中三个在解剖学和组成上不同的区域,在那里它们形成了由9纳米膜内颗粒组成的密集堆积的“玫瑰花结”。这些轴膜KV1.1/KV1.2玫瑰花结与周围近节旁髓鞘环和沿内轴系膜中同样呈匹配玫瑰花结状的连接蛋白29(Cx29)通道精确对齐并在超微结构上耦合。由于在这些特殊区域中足够大以代表离子通道的跨膜蛋白中超过98%是KV1.1/KV1.2通道,约500,000个KV1.1/KV1.2通道将成对的近节旁区域定义为电压门控钾离子传导的专属膜域,该传导是哺乳动物轴突快速复极化的基础。在每个检查的大直径有髓轴突中,KV1通道与相邻近节旁环中的Cx29通道的1:1分子连接,加上它们与沿每个内轴系膜的另外250,000 - 400,000个Cx29通道的连接,支持了先前提出的钾离子从哺乳动物轴突的近节旁轴质直接传导到近节旁髓质中的观点。在青蛙有髓轴突中既检测不到Cx29蛋白也检测不到髓鞘玫瑰花结,这些数据表明啮齿动物轴突中丰富的KV1/Cx29通道实现了轴突与髓鞘的连接,这支持了重新考虑髓鞘在提高哺乳动物有髓轴突的跳跃传导速度和最大传播频率方面的电活性作用。