Li Qingyun, Barish Scott, Okuwa Sumie, Maciejewski Abigail, Brandt Alicia T, Reinhold Dominik, Jones Corbin D, Volkan Pelin Cayirlioglu
Department of Biology, Duke University, Durham, North Carolina, United States of America.
Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America.
PLoS Genet. 2016 Jan 14;12(1):e1005780. doi: 10.1371/journal.pgen.1005780. eCollection 2016 Jan.
Sensory neuron diversity is required for organisms to decipher complex environmental cues. In Drosophila, the olfactory environment is detected by 50 different olfactory receptor neuron (ORN) classes that are clustered in combinations within distinct sensilla subtypes. Each sensilla subtype houses stereotypically clustered 1-4 ORN identities that arise through asymmetric divisions from a single multipotent sensory organ precursor (SOP). How each class of SOPs acquires a unique differentiation potential that accounts for ORN diversity is unknown. Previously, we reported a critical component of SOP diversification program, Rotund (Rn), increases ORN diversity by generating novel developmental trajectories from existing precursors within each independent sensilla type lineages. Here, we show that Rn, along with BarH1/H2 (Bar), Bric-à-brac (Bab), Apterous (Ap) and Dachshund (Dac), constitutes a transcription factor (TF) network that patterns the developing olfactory tissue. This network was previously shown to pattern the segmentation of the leg, which suggests that this network is functionally conserved. In antennal imaginal discs, precursors with diverse ORN differentiation potentials are selected from concentric rings defined by unique combinations of these TFs along the proximodistal axis of the developing antennal disc. The combinatorial code that demarcates each precursor field is set up by cross-regulatory interactions among different factors within the network. Modifications of this network lead to predictable changes in the diversity of sensilla subtypes and ORN pools. In light of our data, we propose a molecular map that defines each unique SOP fate. Our results highlight the importance of the early prepatterning gene regulatory network as a modulator of SOP and terminally differentiated ORN diversity. Finally, our model illustrates how conserved developmental strategies are used to generate neuronal diversity.
生物体要解读复杂的环境线索,就需要感觉神经元的多样性。在果蝇中,嗅觉环境由50种不同的嗅觉受体神经元(ORN)类别检测,这些类别以组合形式聚集在不同的感器亚型中。每个感器亚型容纳1 - 4个典型聚集的ORN身份,这些身份通过单个多能感觉器官前体(SOP)的不对称分裂产生。每类SOP如何获得独特的分化潜能以解释ORN多样性尚不清楚。此前,我们报道了SOP多样化程序的一个关键成分Rotund(Rn),它通过在每个独立的感器类型谱系内从现有前体产生新的发育轨迹来增加ORN多样性。在这里,我们表明Rn与BarH1/H2(Bar)、Bric-à-brac(Bab)、Apterous(Ap)和Dachshund(Dac)一起构成了一个转录因子(TF)网络,该网络对发育中的嗅觉组织进行模式化。这个网络此前已被证明对腿部的节段化进行模式化,这表明该网络在功能上是保守的。在触角成虫盘(antennal imaginal discs)中,具有不同ORN分化潜能的前体是从沿着发育中的触角盘的近端 - 远端轴由这些TF的独特组合定义的同心环中选择的。划分每个前体区域的组合密码是由网络内不同因子之间的交叉调节相互作用建立的。对这个网络的修改会导致感器亚型和ORN库多样性的可预测变化。根据我们的数据,我们提出了一个定义每个独特SOP命运的分子图谱。我们的结果强调了早期预模式基因调控网络作为SOP和终末分化ORN多样性调节剂的重要性。最后,我们的模型说明了如何利用保守的发育策略来产生神经元多样性。