Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China).
Angew Chem Int Ed Engl. 2015 Nov 23;54(48):14402-6. doi: 10.1002/anie.201507354. Epub 2015 Oct 2.
Electrode fouling and passivation is a substantial and inevitable limitation in electrochemical biosensing, and it is a great challenge to efficiently remove the contaminant without changing the surface structure and electrochemical performance. Herein, we propose a versatile and efficient strategy based on photocatalytic cleaning to construct renewable electrochemical sensors for cell analysis. This kind of sensor was fabricated by controllable assembly of reduced graphene oxide (RGO) and TiO2 to form a sandwiching RGO@TiO2 structure, followed by deposition of Au nanoparticles (NPs) onto the RGO shell. The Au NPs-RGO composite shell provides high electrochemical performance. Meanwhile, the encapsulated TiO2 ensures an excellent photocatalytic cleaning property. Application of this renewable microsensor for detection of nitric oxide (NO) release from cells demonstrates the great potential of this strategy in electrode regeneration and biosensing.
电极污垢和钝化是电化学生物传感中一个实质性且不可避免的限制,而在不改变表面结构和电化学性能的情况下有效地去除污染物是一个巨大的挑战。在此,我们提出了一种基于光催化清洁的通用且高效的策略,用于构建用于细胞分析的可再生电化学传感器。这种传感器是通过可控组装还原氧化石墨烯(RGO)和 TiO2 来构建的,形成 RGO@TiO2 结构的夹心结构,然后在 RGO 壳上沉积金纳米粒子(NPs)。Au NPs-RGO 复合壳提供了高电化学性能。同时,封装的 TiO2 确保了优异的光催化清洁性能。该可再生微传感器在检测细胞中一氧化氮(NO)释放方面的应用证明了该策略在电极再生和生物传感方面的巨大潜力。