Department of Emergency Medicine, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si 463-707, Gyeonggi-do, Republic of Korea.
Department of Emergency Medicine, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si 463-707, Gyeonggi-do, Republic of Korea.
Resuscitation. 2016 Mar;100:18-24. doi: 10.1016/j.resuscitation.2015.12.013. Epub 2016 Jan 13.
We developed a new neuroprognostication method for cardiac arrest (CA) using the relative volume of the most dominant cluster of low apparent diffusion coefficient (ADC) voxels and tested its performance in a multicenter setting.
Adult (>15 years) out-of-hospital CA patients from three different facilities who underwent an MRI 12h after resuscitation were retrospectively analyzed. Patients with unknown long-term prognosis or poor baseline neurologic function were excluded. Average ADCs (mean and median), LADCV (relative volume of low-ADC voxels) and DC-LADCV (relative volume of most dominant cluster of low-ADC voxels) were extracted using different thresholds between 400 and 800 × 10(-6) mm(2) s(-1) at 10 × 10(-6) mm(2) s(-1) intervals. Area under the receiver operating characteristic curve (AUROC) and sensitivity for poor outcome (6-month cerebral performance category score >2) while maintaining 100% specificity were measured.
110 patients were analyzed. Average ADCs showed fair performance with an AUROC of 0.822 (95% confidence interval [CI], 0.744-0.900) for the mean and 0.799 (95% CI, 0.716-0.882) for the median. LADCV showed better performance with a higher AUROC (maximum, 0.925) in an ADC threshold range of 400 to 690 × 10(-6) mm(2) s(-1). DC-LADCV showed the best performance with a higher AUROC (maximum, 0.955) compared with LADCV in an ADC threshold range of 600 to 680 × 10(-6) mm(2) s(-1). DC-LADCV had a high sensitivity for poor outcomes (>80%) in a wide threshold range from 400 to 580 × 10(-6) mm(2) s(-1) with a maximum of 89.2%.
Quantitative analysis using DC-LADCV showed impressive performance in determining the prognosis of out-of-hospital CA patients in a multicenter setting.
我们开发了一种新的心脏骤停(CA)神经预后方法,使用低表观扩散系数(ADC)体素最优势簇的相对体积,并在多中心环境中测试了其性能。
回顾性分析了三家不同机构的成人(>15 岁)院外 CA 患者,他们在复苏后 12 小时进行了 MRI 检查。排除了长期预后未知或基线神经功能不良的患者。使用 400 至 800×10(-6)mm(2)s(-1)之间不同的阈值,在 10×10(-6)mm(2)s(-1)的间隔下提取平均 ADC(均值和中位数)、LADCV(低 ADC 体素的相对体积)和 DC-LADCV(最优势簇的低 ADC 体素的相对体积)。以保持 100%特异性为前提,测量不良预后(6 个月脑功能分类评分>2)的受试者工作特征曲线(AUROC)下面积和敏感性。
共分析了 110 例患者。平均 ADC 表现出良好的性能,平均 AUROC 为 0.822(95%置信区间[CI],0.744-0.900),中位数 AUROC 为 0.799(95%CI,0.716-0.882)。LADCV 在 ADC 阈值范围为 400 至 690×10(-6)mm(2)s(-1)时,表现出更好的性能,AUROC 更高(最大值为 0.925)。与 LADCV 相比,在 ADC 阈值范围为 600 至 680×10(-6)mm(2)s(-1)时,DC-LADCV 表现出最佳性能,AUROC 更高(最大值为 0.955)。在 ADC 阈值范围为 400 至 580×10(-6)mm(2)s(-1)时,DC-LADCV 具有高敏感性(>80%),最大敏感性为 89.2%。
在多中心环境中,使用 DC-LADCV 的定量分析在确定院外 CA 患者的预后方面表现出色。