Niegowski Maciej, Zivanovic Miroslav
Deptartment Ingeniería Eléctrica y Electrónica, Universidad Pública de Navarra Campus Arrosadía, 31006 Pamplona, Spain.
Med Eng Phys. 2016 Mar;38(3):248-56. doi: 10.1016/j.medengphy.2015.12.008. Epub 2016 Jan 13.
We present a novel approach aimed at removing electrocardiogram (ECG) perturbation from single-channel surface electromyogram (EMG) recordings by means of unsupervised learning of wavelet-based intensity images. The general idea is to combine the suitability of certain wavelet decomposition bases which provide sparse electrocardiogram time-frequency representations, with the capacity of non-negative matrix factorization (NMF) for extracting patterns from images. In order to overcome convergence problems which often arise in NMF-related applications, we design a novel robust initialization strategy which ensures proper signal decomposition in a wide range of ECG contamination levels. Moreover, the method can be readily used because no a priori knowledge or parameter adjustment is needed. The proposed method was evaluated on real surface EMG signals against two state-of-the-art unsupervised learning algorithms and a singular spectrum analysis based method. The results, expressed in terms of high-to-low energy ratio, normalized median frequency, spectral power difference and normalized average rectified value, suggest that the proposed method enables better ECG-EMG separation quality than the reference methods.
我们提出了一种新颖的方法,旨在通过基于小波的强度图像的无监督学习,从单通道表面肌电图(EMG)记录中去除心电图(ECG)干扰。总体思路是将某些提供稀疏心电图时频表示的小波分解基的适用性,与非负矩阵分解(NMF)从图像中提取模式的能力相结合。为了克服在与NMF相关的应用中经常出现的收敛问题,我们设计了一种新颖的鲁棒初始化策略,该策略可确保在各种ECG污染水平下都能进行适当的信号分解。此外,该方法易于使用,因为不需要先验知识或参数调整。我们针对两种最新的无监督学习算法和一种基于奇异谱分析的方法,在真实表面EMG信号上对所提出的方法进行了评估。以高到低能量比、归一化中频、频谱功率差和归一化平均整流值表示的结果表明,所提出的方法比参考方法能够实现更好的ECG-EMG分离质量。