Biederman Joel A, Scott Russell L, Goulden Michael L, Vargas Rodrigo, Litvak Marcy E, Kolb Thomas E, Yepez Enrico A, Oechel Walter C, Blanken Peter D, Bell Tom W, Garatuza-Payan Jaime, Maurer Gregory E, Dore Sabina, Burns Sean P
Southwest Watershed Research Center, Agricultural Research Service, Tucson, AZ, 85719, USA.
Department of Earth System Science, University of California Irvine, Irvine, CA, 92697, USA.
Glob Chang Biol. 2016 May;22(5):1867-79. doi: 10.1111/gcb.13222. Epub 2016 Feb 15.
Global modeling efforts indicate semiarid regions dominate the increasing trend and interannual variation of net CO2 exchange with the atmosphere, mainly driven by water availability. Many semiarid regions are expected to undergo climatic drying, but the impacts on net CO2 exchange are poorly understood due to limited semiarid flux observations. Here we evaluated 121 site-years of annual eddy covariance measurements of net and gross CO2 exchange (photosynthesis and respiration), precipitation, and evapotranspiration (ET) in 21 semiarid North American ecosystems with an observed range of 100 - 1000 mm in annual precipitation and records of 4-9 years each. In addition to evaluating spatial relationships among CO2 and water fluxes across sites, we separately quantified site-level temporal relationships, representing sensitivity to interannual variation. Across the climatic and ecological gradient, photosynthesis showed a saturating spatial relationship to precipitation, whereas the photosynthesis-ET relationship was linear, suggesting ET was a better proxy for water available to drive CO2 exchanges after hydrologic losses. Both photosynthesis and respiration showed similar site-level sensitivity to interannual changes in ET among the 21 ecosystems. Furthermore, these temporal relationships were not different from the spatial relationships of long-term mean CO2 exchanges with climatic ET. Consequently, a hypothetical 100-mm change in ET, whether short term or long term, was predicted to alter net ecosystem production (NEP) by 64 gCm(-2) yr(-1). Most of the unexplained NEP variability was related to persistent, site-specific function, suggesting prioritization of research on slow-changing controls. Common temporal and spatial sensitivity to water availability increases our confidence that site-level responses to interannual weather can be extrapolated for prediction of CO2 exchanges over decadal and longer timescales relevant to societal response to climate change.
全球建模研究表明,半干旱地区主导着与大气之间净二氧化碳交换的增加趋势和年际变化,这主要是由水分可利用性驱动的。预计许多半干旱地区将经历气候变干,但由于半干旱通量观测有限,对净二氧化碳交换的影响仍知之甚少。在此,我们评估了北美21个半干旱生态系统中121个站点年的净二氧化碳和总二氧化碳交换(光合作用和呼吸作用)、降水以及蒸散量(ET)的涡度协方差年度测量数据,这些站点的年降水量观测范围为100 - 1000毫米,每个站点有4 - 9年的记录。除了评估不同站点间二氧化碳和水分通量的空间关系外,我们还分别量化了站点水平的时间关系,以表示对年际变化的敏感性。在整个气候和生态梯度上,光合作用与降水呈现出饱和的空间关系,而光合作用与ET的关系是线性的,这表明在水文损失后,ET是驱动二氧化碳交换的可用水分的更好指标。在这21个生态系统中,光合作用和呼吸作用对ET的年际变化均表现出相似的站点水平敏感性。此外,这些时间关系与长期平均二氧化碳交换与气候ET的空间关系并无差异。因此,预计ET发生假设性的100毫米变化,无论短期还是长期,都将使净生态系统生产力(NEP)改变64克碳每平方米每年。大部分无法解释的NEP变异性与持续的、特定于站点的功能有关,这表明应优先研究缓慢变化的控制因素。对水分可利用性的共同时间和空间敏感性增强了我们的信心,即站点对年际天气的响应可以外推,以预测与社会应对气候变化相关的十年及更长时间尺度上的二氧化碳交换。