文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有小比例碳纳米管/石墨烯混合填充剂的可拉伸导体增强的电子网络。

Enhanced Electrical Networks of Stretchable Conductors with Small Fraction of Carbon Nanotube/Graphene Hybrid Fillers.

机构信息

IBS Center for Multidimensional Carbon Materials (CMCM), Ulsan National Institute of Science and Technology (UNIST) , 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2016 Feb 10;8(5):3319-25. doi: 10.1021/acsami.5b11205. Epub 2016 Jan 28.


DOI:10.1021/acsami.5b11205
PMID:26784473
Abstract

Carbon nanotubes (CNTs) and graphene are known to be good conductive fillers due to their favorable electrical properties and high aspect ratios and have been investigated for application as stretchable composite conductors. A stretchable conducting nanocomposite should have a small fraction of conductive filler material to maintain stretchability. Here we demonstrate enhanced electrical networks of nanocomposites via the use of a CNT-graphene hybrid system using a small mass fraction of conductive filler. The CNT-graphene hybrid system exhibits synergistic effects that prevent agglomeration of CNTs and graphene restacking and reduce contact resistance by formation of 1D(CNT)-2D(graphene) interconnection. These effects resulted in nanocomposite materials formed of multiwalled carbon nanotubes (MWCNTs), thermally reduced graphene (TRG), and polydimethylsiloxane (PDMS), which had a higher electrical conductivity compared with MWCNT/PDMS or TRG/PDMS nanocomposites until specific fraction that is sufficient to form electrical network among conductive fillers. These nanocomposite materials maintained their electrical conductivity when 60% strained.

摘要

碳纳米管(CNTs)和石墨烯由于其优异的电学性能和高纵横比,被认为是良好的导电填充剂,并已被研究应用于可拉伸复合导体。可拉伸导电纳米复合材料应该具有少量的导电填充材料,以保持可拉伸性。在这里,我们通过使用小质量分数的导电填充材料,展示了通过 CNT-石墨烯混合系统增强的纳米复合材料的电网络。CNT-石墨烯混合系统表现出协同效应,防止 CNTs 和石墨烯的团聚和重新堆积,并通过形成 1D(CNT)-2D(石墨烯)连接来降低接触电阻。这些效应导致由多壁碳纳米管(MWCNTs)、热还原石墨烯(TRG)和聚二甲基硅氧烷(PDMS)组成的纳米复合材料具有比 MWCNT/PDMS 或 TRG/PDMS 纳米复合材料更高的电导率,直到形成导电填充剂之间的电网络的特定分数。当应变达到 60%时,这些纳米复合材料仍保持其电导率。

相似文献

[1]
Enhanced Electrical Networks of Stretchable Conductors with Small Fraction of Carbon Nanotube/Graphene Hybrid Fillers.

ACS Appl Mater Interfaces. 2016-1-28

[2]
Fabrication of highly stretchable conductors via morphological control of carbon nanotube network.

Small. 2013-4-30

[3]
Core-shell structured graphene sphere-silver nanowire hybrid filler embedded polydimethylsiloxane nanocomposites for stretchable conductor.

Nanotechnology. 2019-11-1

[4]
Electrically conductive epoxy nanocomposites with expanded graphite/carbon nanotube hybrid fillers prepared by direct hybridization.

J Nanosci Nanotechnol. 2014-12

[5]
Enhanced dielectric performance in polymer composite films with carbon nanotube-reduced graphene oxide hybrid filler.

Small. 2014-5-2

[6]
Bioinspired, Highly Stretchable, and Conductive Dry Adhesives Based on 1D-2D Hybrid Carbon Nanocomposites for All-in-One ECG Electrodes.

ACS Nano. 2016-3-22

[7]
Biocompatible, Electroconductive, and Highly Stretchable Hybrid Silicone Composites Based on Few-Layer Graphene and CNTs.

Nanomaterials (Basel). 2021-4-28

[8]
Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers.

Nanoscale. 2016-6-15

[9]
Fabrication of Highly Stretchable Conductors Based on 3D Printed Porous Poly(dimethylsiloxane) and Conductive Carbon Nanotubes/Graphene Network.

ACS Appl Mater Interfaces. 2016-1-11

[10]
Highly Conductive Doped Hybrid Carbon Nanotube-Graphene Wires.

ACS Appl Mater Interfaces. 2019-8-26

引用本文的文献

[1]
Graphene-Based Hybrid Fillers for Rubber Composites.

Molecules. 2024-2-26

[2]
Advances in Monte Carlo Method for Simulating the Electrical Percolation Behavior of Conductive Polymer Composites with a Carbon-Based Filling.

Polymers (Basel). 2024-2-18

[3]
Ionic poly(dimethylsiloxane)-silica nanocomposites: Dispersion and self-healing.

MRS Bull. 2022

[4]
Preparation of carbon black/silicone rubber composites with large-area-homogeneous-low electrical-resistance used as electroplating matrix.

RSC Adv. 2022-11-11

[5]
Modeling and characterization of the electrical conductivity on metal nanoparticles/carbon nanotube/polymer composites.

Sci Rep. 2022-6-21

[6]
Synergistic effect of functionalized graphene oxide and carbon nanotube hybrids on mechanical properties of epoxy composites.

RSC Adv. 2018-11-16

[7]
The synergistic effect of a graphene nanoplate/FeO@BaTiO hybrid and MWCNTs on enhancing broadband electromagnetic interference shielding performance.

RSC Adv. 2018-1-8

[8]
Connecting concrete technology and machine learning: proposal for application of ANNs and CNT/concrete composites in structural health monitoring.

RSC Adv. 2020-6-17

[9]
Silicone Composites with CNT/Graphene Hybrid Fillers: A Review.

Materials (Basel). 2021-5-6

[10]
Biocompatible, Electroconductive, and Highly Stretchable Hybrid Silicone Composites Based on Few-Layer Graphene and CNTs.

Nanomaterials (Basel). 2021-4-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索