Suppr超能文献

多重对应分析的同步双向聚类

Simultaneous Two-Way Clustering of Multiple Correspondence Analysis.

作者信息

Hwang Heungsun, Dillon William R

机构信息

a McGill University.

b Southern Methodist University.

出版信息

Multivariate Behav Res. 2010 Jan 29;45(1):186-208. doi: 10.1080/00273170903504893.

Abstract

A 2-way clustering approach to multiple correspondence analysis is proposed to account for cluster-level heterogeneity of both respondents and variable categories in multivariate categorical data. Specifically, in the proposed method, multiple correspondence analysis is combined with k-means in a unified framework in which k-means is applied twice to partition the object scores of respondents and the weights of variable categories. In this way, joint clusters that relate a subgroup of respondents exclusively to a subset of variable categories are obtained. The proposed method provides a low-dimensional map of displaying variable category points and the centroids of joint clusters simultaneously. In addition, it offers joint-cluster memberships of variable categories as well as respondents. A Monte Carlo study is conducted to assess the parameter recovery capability of the proposed method based on synthetic data. An empirical application concerning Korean consumers' preferences toward various underwear brands and attributes is presented to demonstrate the effectiveness of the proposed method as compared with 2 relevant extant approaches.

摘要

提出了一种用于多重对应分析的双向聚类方法,以解决多变量分类数据中受访者和变量类别的聚类级异质性问题。具体而言,在所提出的方法中,多重对应分析与k均值在一个统一框架中相结合,其中k均值应用两次,分别用于对受访者的对象得分和变量类别的权重进行划分。通过这种方式,可获得将特定受访者子组与变量类别子集专门关联起来的联合聚类。所提出的方法提供了一个低维地图,可同时显示变量类别点和联合聚类的质心。此外,它还提供变量类别以及受访者的联合聚类成员关系。进行了一项蒙特卡罗研究,以基于合成数据评估所提出方法的参数恢复能力。给出了一个关于韩国消费者对各种内衣品牌和属性偏好的实证应用,以证明所提出的方法与两种相关现有方法相比的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验