Weichman Marissa L, DeVine Jessalyn A, Levine Daniel S, Kim Jongjin B, Neumark Daniel M
Department of Chemistry, University of California, Berkeley, CA 94720;
Department of Chemistry, University of California, Berkeley, CA 94720; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):1698-705. doi: 10.1073/pnas.1520862113. Epub 2016 Jan 20.
Polycyclic aromatic hydrocarbons, in various charge and protonation states, are key compounds relevant to combustion chemistry and astrochemistry. Here, we probe the vibrational and electronic spectroscopy of gas-phase 9-, 1-, and 2-anthracenyl radicals (C14H9) by photodetachment of the corresponding cryogenically cooled anions via slow photoelectron velocity-map imaging (cryo-SEVI). The use of a newly designed velocity-map imaging lens in combination with ion cooling yields photoelectron spectra with <2 cm(-1) resolution. Isomer selection of the anions is achieved using gas-phase synthesis techniques, resulting in observation and interpretation of detailed vibronic structure of the ground and lowest excited states for the three anthracenyl radical isomers. The ground-state bands yield electron affinities and vibrational frequencies for several Franck-Condon active modes of the 9-, 1-, and 2-anthracenyl radicals; term energies of the first excited states of these species are also measured. Spectra are interpreted through comparison with ab initio quantum chemistry calculations, Franck-Condon simulations, and calculations of threshold photodetachment cross sections and anisotropies. Experimental measures of the subtle differences in energetics and relative stabilities of these radical isomers are of interest from the perspective of fundamental physical organic chemistry and aid in understanding their behavior and reactivity in interstellar and combustion environments. Additionally, spectroscopic characterization of these species in the laboratory is essential for their potential identification in astrochemical data.
处于各种电荷和质子化状态的多环芳烃是与燃烧化学和天体化学相关的关键化合物。在此,我们通过慢光电子速度成像(低温SEVI)对相应低温冷却阴离子进行光解离,来探测气相中9 -、1 - 和2 - 蒽基自由基(C₁₄H₉)的振动光谱和电子光谱。使用新设计的速度成像透镜与离子冷却相结合,可得到分辨率小于2厘米⁻¹的光电子能谱。利用气相合成技术实现了阴离子的异构体选择,从而对三种蒽基自由基异构体的基态和最低激发态的详细振转结构进行了观测和解释。基态能带给出了9 -、1 - 和2 - 蒽基自由基几种弗兰克 - 康登活性模式的电子亲和能和振动频率;还测量了这些物种第一激发态的项能。通过与从头算量子化学计算、弗兰克 - 康登模拟以及阈值光解离截面和各向异性计算进行比较,对光谱进行了解释。从基础物理有机化学的角度来看,对这些自由基异构体能量和相对稳定性细微差异的实验测量很有意义,有助于理解它们在星际和燃烧环境中的行为和反应性。此外,在实验室中对这些物种进行光谱表征对于在天体化学数据中潜在识别它们至关重要。