Suppr超能文献

计算 pKa 值变化揭示动态别构通讯网络。

Calculated pKa Variations Expose Dynamic Allosteric Communication Networks.

机构信息

Institute of Fundamental Sciences, Massey University , PO Box 11-222, Palmerston North 4422, New Zealand.

出版信息

J Am Chem Soc. 2016 Feb 17;138(6):2036-45. doi: 10.1021/jacs.5b13134. Epub 2016 Feb 5.

Abstract

Allosteric regulation of protein function, the process by which binding of an effector molecule provokes a functional response from a distal site, is critical for metabolic pathways. Yet, the way the allosteric signal is communicated remains elusive, especially in dynamic, entropically driven regulation mechanisms for which no major conformational changes are observed. To identify these dynamic allosteric communication networks, we have developed an approach that monitors the pKa variations of ionizable residues over the course of molecular dynamics simulations performed in the presence and absence of an allosteric regulator. As the pKa of ionizable residues depends on their environment, it represents a simple metric to monitor changes in several complex factors induced by binding an allosteric effector. These factors include Coulombic interactions, hydrogen bonding, and solvation, as well as backbone motions and side chain fluctuations. The predictions that can be made with this method concerning the roles of ionizable residues for allosteric communication can then be easily tested experimentally by changing the working pH of the protein or performing single point mutations. To demonstrate the method's validity, we have applied this approach to the subtle dynamic regulation mechanism observed for Neisseria meningitidis 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase, the first enzyme of aromatic biosynthesis. We were able to identify key communication pathways linking the allosteric binding site to the active site of the enzyme and to validate these findings experimentally by reestablishing the catalytic activity of allosterically inhibited enzyme via modulation of the working pH, without compromising the binding affinity of the allosteric regulator.

摘要

蛋白质功能的变构调节,即效应分子结合引发远端部位功能反应的过程,对代谢途径至关重要。然而,变构信号的传递方式仍然难以捉摸,特别是在没有观察到主要构象变化的动态、熵驱动的调节机制中。为了识别这些动态变构通讯网络,我们开发了一种方法,该方法在存在和不存在变构调节剂的情况下,通过监测离子化残基在分子动力学模拟过程中的 pKa 变化来监测其变化。由于离子化残基的 pKa 取决于其环境,因此它是一种简单的指标,可以监测结合变构效应物引起的几个复杂因素的变化。这些因素包括库仑相互作用、氢键和溶剂化作用,以及骨架运动和侧链波动。可以通过改变蛋白质的工作 pH 值或进行单点突变等方法,很容易地通过该方法对变构通讯中离子化残基的作用进行预测,并进行实验验证。为了证明该方法的有效性,我们将其应用于脑膜炎奈瑟氏菌 3-脱氧-d-阿拉伯庚糖-7-磷酸合酶观察到的微妙动态调节机制,该酶是芳香族生物合成的第一个酶。我们能够识别将变构结合位点与酶的活性位点连接的关键通讯途径,并通过调节工作 pH 值来重新建立变构抑制酶的催化活性来验证这些发现,而不影响变构调节剂的结合亲和力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验