Institute of Analytical Chemistry of the CAS, v. v. i. , Veveří 97, 60200 Brno, Czech Republic.
National Research Council of Canada , 1200 Montreal Road, Ottawa, Ontario K1A 0R6, Canada.
Anal Chem. 2016 Feb 2;88(3):1804-11. doi: 10.1021/acs.analchem.5b04095. Epub 2016 Jan 21.
Atomization of bismuthane in a planar dielectric barrier discharge (DBD) atomizer was investigated using a variety of probes, including atomic absorption spectrometry (AAS) to monitor distribution of free atoms along the optical path and direct analysis in real time (DART) coupled to an Orbitrap mass spectrometer to identify the structure of the species arising from the hydride generator as well as the atomizer. Results obtained with the DBD were compared to those from a conventional externally heated quartz tube atomizer (QTA). Free Bi atoms were essentially absent outside the central part of the DBD atomizer, suggesting their high reactivity. The gas phase analyte fraction transported beyond the confines of the DBD or QTA atomizers, quantified by inductively coupled plasma mass spectrometry (ICP-MS), was less than 10%. The amount of Bi found in acidic leachates of the interiors of both atomizers, representing the fraction retained on their surfaces, was ca. 90%. These complementary experiments comprising the determination of recovered Bi in the nitric acid leachates from deposition in the atomizer on the one hand and quantification of the Bi fraction transportable outside the atomizer on the other, were in excellent agreement, providing 100% mass balance of detected analyte. The high fraction of Bi deposited in the atomizers indicates significant reactivity of free Bi atoms, which is in accord with the fact that almost no free Bi atoms exist beyond the physical boundaries of the DBD. The extent of interference from other hydride forming elements (As, Sb, Se) on Bi response by AAS using DBD and QTA atomizers was investigated, with the former atomizer providing superior performance. Compared to QTA, DBD provided 2 orders of magnitude and 1 order of magnitude, respectively, better resistance to interference from Se and Sb.
采用多种探针研究了平面介质阻挡放电(DBD)原子化器中铋烷的雾化情况,包括原子吸收光谱(AAS)监测自由原子沿光路的分布,以及直接实时分析(DART)与轨道阱质谱联用,以鉴定来自氢化物发生器和原子化器的物种结构。将 DBD 的结果与传统的外部加热石英管原子化器(QTA)的结果进行了比较。在 DBD 原子化器的中心部分之外,基本上不存在游离的 Bi 原子,这表明它们具有很高的反应活性。通过电感耦合等离子体质谱(ICP-MS)定量分析输送到 DBD 或 QTA 原子化器外部的气相分析物部分,不到 10%。在这两种原子化器的内部酸性浸出物中发现的 Bi 量(代表其表面保留的部分)约为 90%。这些互补实验包括一方面测定沉积在原子化器内部的硝酸浸出物中回收的 Bi 量,另一方面定量测定可输送到原子化器外部的 Bi 部分,两者结果非常吻合,提供了检测到的分析物的 100%质量平衡。在原子化器中沉积的大量 Bi 表明游离 Bi 原子具有很高的反应活性,这与 DBD 中游离 Bi 原子的存在范围几乎不超出物理边界的事实相符。采用 DBD 和 QTA 原子化器研究了其他形成氢化物的元素(As、Sb、Se)对 AAS 中 Bi 响应的干扰程度,前者提供了更好的性能。与 QTA 相比,DBD 分别对 Se 和 Sb 的干扰具有 2 个和 1 个数量级的更好的抗干扰能力。