Pashos G, Kokkoris G, Papathanasiou A G, Boudouvis A G
School of Chemical Engineering, National Technical University of Athens, Zografou Campus, Athens 15780, Greece.
J Chem Phys. 2016 Jan 21;144(3):034105. doi: 10.1063/1.4940032.
The Minimum Energy Paths (MEPs) of wetting transitions on pillared surfaces are computed with the Young-Laplace equation, augmented with a pressure term that accounts for liquid-solid interactions. The interactions are smoothed over a short range from the solid phase, therefore facilitating the numerical solution of problems concerning wetting on complex surface patterns. The patterns may include abrupt geometric features, e.g., arrays of rectangular pillars, where the application of the unmodified Young-Laplace is not practical. The MEPs are obtained by coupling the augmented Young-Laplace with the modified string method from which the energy barriers of wetting transitions are eventually extracted. We demonstrate the method on a wetting transition that is associated with the breakdown of superhydrophobic behavior, i.e., the transition from the Cassie-Baxter state to the Wenzel state, taking place on a superhydrophobic pillared surface. The computed energy barriers quantify the resistance of the system to these transitions and therefore, they can be used to evaluate superhydrophobic performance or provide guidelines for optimal pattern design.
利用经增强的杨-拉普拉斯方程计算柱状表面上润湿转变的最小能量路径,该方程增加了一个考虑液-固相互作用的压力项。这种相互作用在固相的短程范围内进行了平滑处理,从而便于求解与复杂表面图案上的润湿相关的问题。这些图案可能包括 abrupt geometric features,例如矩形柱状阵列,在此类情况下应用未修改的杨-拉普拉斯方程并不实用。通过将增强的杨-拉普拉斯方程与改进的弦方法相结合来获得最小能量路径,最终从中提取出润湿转变的能垒。我们在与超疏水行为破坏相关的润湿转变上演示了该方法,即超疏水柱状表面上从卡西-巴克斯特状态到文策尔状态的转变。计算得到的能垒量化了系统对这些转变的阻力,因此,它们可用于评估超疏水性能或为优化图案设计提供指导。