Suppr超能文献

无内含子基因中外显子剪接增强子的纯化选择

Purifying Selection on Exonic Splice Enhancers in Intronless Genes.

作者信息

Savisaar Rosina, Hurst Laurence D

机构信息

Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom

Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, United Kingdom.

出版信息

Mol Biol Evol. 2016 Jun;33(6):1396-418. doi: 10.1093/molbev/msw018. Epub 2016 Jan 23.

Abstract

Exonic splice enhancers (ESEs) are short nucleotide motifs, enriched near exon ends, that enhance the recognition of the splice site and thus promote splicing. Are intronless genes under selection to avoid these motifs so as not to attract the splicing machinery to an mRNA that should not be spliced, thereby preventing the production of an aberrant transcript? Consistent with this possibility, we find that ESEs in putative recent retrocopies are at a higher density and evolving faster than those in other intronless genes, suggesting that they are being lost. Moreover, intronless genes are less dense in putative ESEs than intron-containing ones. However, this latter difference is likely due to the skewed base composition of intronless sequences, a skew that is in line with the general GC richness of few exon genes. Indeed, after controlling for such biases, we find that both intronless and intron-containing genes are denser in ESEs than expected by chance. Importantly, nucleotide-controlled analysis of evolutionary rates at synonymous sites in ESEs indicates that the ESEs in intronless genes are under purifying selection in both human and mouse. We conclude that on the loss of introns, some but not all, ESE motifs are lost, the remainder having functions beyond a role in splice promotion. These results have implications for the design of intronless transgenes and for understanding the causes of selection on synonymous sites.

摘要

外显子剪接增强子(ESEs)是短核苷酸基序,在外显子末端附近富集,可增强剪接位点的识别,从而促进剪接。无内含子基因是否会受到选择以避免这些基序,从而不吸引剪接机制作用于不应被剪接的mRNA,进而防止异常转录本的产生?与这种可能性一致的是,我们发现假定的近期反转录拷贝中的ESEs密度更高,且比其他无内含子基因中的ESEs进化得更快,这表明它们正在丢失。此外,无内含子基因中假定的ESEs密度低于含内含子基因。然而,后一种差异可能是由于无内含子序列的碱基组成偏斜,这种偏斜与少数外显子基因普遍富含GC的情况一致。事实上,在控制了这种偏差之后,我们发现无内含子基因和含内含子基因中的ESEs密度都高于随机预期。重要的是,对ESEs同义位点进化速率的核苷酸控制分析表明,无内含子基因中的ESEs在人类和小鼠中都受到纯化选择。我们得出结论,在内含子丢失后,一些但不是所有的ESE基序会丢失,其余的具有超出促进剪接作用的功能。这些结果对无内含子转基因的设计以及理解同义位点选择的原因具有启示意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5141/4868121/3c620fbe0b6f/msw018f1p.jpg

相似文献

1
Purifying Selection on Exonic Splice Enhancers in Intronless Genes.
Mol Biol Evol. 2016 Jun;33(6):1396-418. doi: 10.1093/molbev/msw018. Epub 2016 Jan 23.
4
Determinants of the Usage of Splice-Associated cis-Motifs Predict the Distribution of Human Pathogenic SNPs.
Mol Biol Evol. 2016 Feb;33(2):518-29. doi: 10.1093/molbev/msv251. Epub 2015 Nov 5.
5
Evidence for purifying selection against synonymous mutations in mammalian exonic splicing enhancers.
Mol Biol Evol. 2006 Feb;23(2):301-9. doi: 10.1093/molbev/msj035. Epub 2005 Oct 12.
7
Distribution of exonic splicing enhancer elements in human genes.
Genomics. 2005 Sep;86(3):329-36. doi: 10.1016/j.ygeno.2005.05.011.
8
Exonic splice regulation imposes strong selection at synonymous sites.
Genome Res. 2018 Oct;28(10):1442-1454. doi: 10.1101/gr.233999.117. Epub 2018 Aug 24.
10
Exonic splicing regulatory elements skew synonymous codon usage near intron-exon boundaries in mammals.
Mol Biol Evol. 2007 Aug;24(8):1600-3. doi: 10.1093/molbev/msm104. Epub 2007 May 24.

引用本文的文献

1
Tumor-promoting effect and tumor immunity of SRSFs.
Front Cell Dev Biol. 2025 Mar 10;13:1527309. doi: 10.3389/fcell.2025.1527309. eCollection 2025.
2
Selection on synonymous sites: the unwanted transcript hypothesis.
Nat Rev Genet. 2024 Jun;25(6):431-448. doi: 10.1038/s41576-023-00686-7. Epub 2024 Jan 31.
3
A novel HPV16 splicing enhancer critical for viral oncogene expression and cell immortalization.
Nucleic Acids Res. 2024 Jan 11;52(1):316-336. doi: 10.1093/nar/gkad1099.
4
SRSF2 is required for mRNA splicing during spermatogenesis.
BMC Biol. 2023 Oct 23;21(1):231. doi: 10.1186/s12915-023-01736-6.
5
SRSF1-mediated alternative splicing is required for spermatogenesis.
Int J Biol Sci. 2023 Sep 11;19(15):4883-4897. doi: 10.7150/ijbs.83474. eCollection 2023.
6
Trends in the evolution of intronless genes in .
Front Plant Sci. 2023 Feb 16;14:1065631. doi: 10.3389/fpls.2023.1065631. eCollection 2023.
7
SR Splicing Factors Promote Cancer via Multiple Regulatory Mechanisms.
Genes (Basel). 2022 Sep 16;13(9):1659. doi: 10.3390/genes13091659.
8
Genome-wide analysis of European sea bass provides insights into the evolution and functions of single-exon genes.
Ecol Evol. 2021 Apr 2;11(11):6546-6557. doi: 10.1002/ece3.7507. eCollection 2021 Jun.
9
Serine/arginine-rich splicing factors: the bridge linking alternative splicing and cancer.
Int J Biol Sci. 2020 Jul 6;16(13):2442-2453. doi: 10.7150/ijbs.46751. eCollection 2020.
10
Codon Usage and Splicing Jointly Influence mRNA Localization.
Cell Syst. 2020 Apr 22;10(4):351-362.e8. doi: 10.1016/j.cels.2020.03.001. Epub 2020 Apr 9.

本文引用的文献

1
Nucleosome Positioning of Intronless Genes in the Human Genome.
IEEE/ACM Trans Comput Biol Bioinform. 2018 Jul-Aug;15(4):1111-1121. doi: 10.1109/TCBB.2015.2476811. Epub 2015 Sep 25.
2
Unmasking alternative splicing inside protein-coding exons defines exitrons and their role in proteome plasticity.
Genome Res. 2015 Jul;25(7):995-1007. doi: 10.1101/gr.186585.114. Epub 2015 May 1.
4
Mammalian NET-Seq Reveals Genome-wide Nascent Transcription Coupled to RNA Processing.
Cell. 2015 Apr 23;161(3):526-540. doi: 10.1016/j.cell.2015.03.027.
6
Multiple roles of the coding sequence 5' end in gene expression regulation.
Nucleic Acids Res. 2015 Jan;43(1):13-28. doi: 10.1093/nar/gku1313. Epub 2014 Dec 12.
7
HIV-1 transcription is regulated by splicing factor SRSF1.
Nucleic Acids Res. 2014 Dec 16;42(22):13812-23. doi: 10.1093/nar/gku1170.
8
SR proteins control a complex network of RNA-processing events.
RNA. 2015 Jan;21(1):75-92. doi: 10.1261/rna.043893.113. Epub 2014 Nov 20.
9
Ensembl 2015.
Nucleic Acids Res. 2015 Jan;43(Database issue):D662-9. doi: 10.1093/nar/gku1010. Epub 2014 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验