Chen Kehui, Lei Jing
University of Pittsburgh and Carnegie Mellon University.
J Am Stat Assoc. 2015;110(511):1266-1275. doi: 10.1080/01621459.2015.1016225. Epub 2015 Apr 1.
We propose localized functional principal component analysis (LFPCA), looking for orthogonal basis functions with localized support regions that explain most of the variability of a random process. The LFPCA is formulated as a convex optimization problem through a novel Deflated Fantope Localization method and is implemented through an efficient algorithm to obtain the global optimum. We prove that the proposed LFPCA converges to the original FPCA when the tuning parameters are chosen appropriately. Simulation shows that the proposed LFPCA with tuning parameters chosen by cross validation can almost perfectly recover the true eigenfunctions and significantly improve the estimation accuracy when the eigenfunctions are truly supported on some subdomains. In the scenario that the original eigenfunctions are not localized, the proposed LFPCA also serves as a nice tool in finding orthogonal basis functions that balance between interpretability and the capability of explaining variability of the data. The analyses of a country mortality data reveal interesting features that cannot be found by standard FPCA methods.
我们提出了局部功能主成分分析(LFPCA),旨在寻找具有局部支持区域的正交基函数,以解释随机过程的大部分变异性。LFPCA通过一种新颖的收缩幻想超曲面定位方法被表述为一个凸优化问题,并通过一种高效算法来实现以获得全局最优解。我们证明,当适当选择调谐参数时,所提出的LFPCA会收敛到原始的FPCA。模拟结果表明,通过交叉验证选择调谐参数的所提出的LFPCA,当特征函数真正在某些子域上有支持时,几乎可以完美地恢复真实特征函数,并显著提高估计精度。在原始特征函数不局部化的情况下,所提出的LFPCA也是寻找在可解释性和解释数据变异性能力之间取得平衡的正交基函数的一个很好的工具。对一个国家死亡率数据的分析揭示了标准FPCA方法无法发现的有趣特征。