Suppr超能文献

局部功能主成分分析

Localized Functional Principal Component Analysis.

作者信息

Chen Kehui, Lei Jing

机构信息

University of Pittsburgh and Carnegie Mellon University.

出版信息

J Am Stat Assoc. 2015;110(511):1266-1275. doi: 10.1080/01621459.2015.1016225. Epub 2015 Apr 1.

Abstract

We propose localized functional principal component analysis (LFPCA), looking for orthogonal basis functions with localized support regions that explain most of the variability of a random process. The LFPCA is formulated as a convex optimization problem through a novel Deflated Fantope Localization method and is implemented through an efficient algorithm to obtain the global optimum. We prove that the proposed LFPCA converges to the original FPCA when the tuning parameters are chosen appropriately. Simulation shows that the proposed LFPCA with tuning parameters chosen by cross validation can almost perfectly recover the true eigenfunctions and significantly improve the estimation accuracy when the eigenfunctions are truly supported on some subdomains. In the scenario that the original eigenfunctions are not localized, the proposed LFPCA also serves as a nice tool in finding orthogonal basis functions that balance between interpretability and the capability of explaining variability of the data. The analyses of a country mortality data reveal interesting features that cannot be found by standard FPCA methods.

摘要

我们提出了局部功能主成分分析(LFPCA),旨在寻找具有局部支持区域的正交基函数,以解释随机过程的大部分变异性。LFPCA通过一种新颖的收缩幻想超曲面定位方法被表述为一个凸优化问题,并通过一种高效算法来实现以获得全局最优解。我们证明,当适当选择调谐参数时,所提出的LFPCA会收敛到原始的FPCA。模拟结果表明,通过交叉验证选择调谐参数的所提出的LFPCA,当特征函数真正在某些子域上有支持时,几乎可以完美地恢复真实特征函数,并显著提高估计精度。在原始特征函数不局部化的情况下,所提出的LFPCA也是寻找在可解释性和解释数据变异性能力之间取得平衡的正交基函数的一个很好的工具。对一个国家死亡率数据的分析揭示了标准FPCA方法无法发现的有趣特征。

相似文献

1
Localized Functional Principal Component Analysis.
J Am Stat Assoc. 2015;110(511):1266-1275. doi: 10.1080/01621459.2015.1016225. Epub 2015 Apr 1.
2
Parametric functional principal component analysis.
Biometrics. 2017 Sep;73(3):802-810. doi: 10.1111/biom.12641. Epub 2017 Mar 10.
3
Robust functional principal component analysis via a functional pairwise spatial sign operator.
Biometrics. 2023 Jun;79(2):1239-1253. doi: 10.1111/biom.13695. Epub 2022 Jun 7.
4
Interpretable functional principal component analysis.
Biometrics. 2016 Sep;72(3):846-54. doi: 10.1111/biom.12457. Epub 2015 Dec 18.
5
Functional data analysis with covariate-dependent mean and covariance structures.
Biometrics. 2023 Sep;79(3):2232-2245. doi: 10.1111/biom.13744. Epub 2022 Sep 21.
6
Sparse principal component analysis by choice of norm.
J Multivar Anal. 2013 Feb 1;114:127-160. doi: 10.1016/j.jmva.2012.07.004. Epub 2012 Jul 16.
7
A Unified Approach to Functional Principal Component Analysis and Functional Multiple-Set Canonical Correlation.
Psychometrika. 2017 Jun;82(2):427-441. doi: 10.1007/s11336-015-9478-5. Epub 2016 Feb 8.
8
A Localization Method for Multistatic SAR Based on Convex Optimization.
PLoS One. 2015 Nov 13;10(11):e0142470. doi: 10.1371/journal.pone.0142470. eCollection 2015.
9
Orthogonal separations: Comparison of orthogonality metrics by statistical analysis.
J Chromatogr A. 2015 Oct 2;1414:60-76. doi: 10.1016/j.chroma.2015.08.029. Epub 2015 Aug 18.
10
A new methodology for Functional Principal Component Analysis from scarce data. Application to stroke rehabilitation.
Annu Int Conf IEEE Eng Med Biol Soc. 2015 Aug;2015:4602-5. doi: 10.1109/EMBC.2015.7319419.

引用本文的文献

1
Clustering Functional Data With Measurement Errors: A Simulation-Based Approach.
Stat Med. 2024 Dec 10;43(28):5344-5352. doi: 10.1002/sim.10238. Epub 2024 Oct 15.
2
Latent factor model for multivariate functional data.
Biometrics. 2023 Dec;79(4):3307-3318. doi: 10.1111/biom.13924. Epub 2023 Sep 4.
3
Gradient-based sparse principal component analysis with extensions to online learning.
Biometrika. 2022 Jul 12;110(2):339-360. doi: 10.1093/biomet/asac041. eCollection 2023 Jun.
5
Interpretable principal component analysis for multilevel multivariate functional data.
Biostatistics. 2023 Apr 14;24(2):227-243. doi: 10.1093/biostatistics/kxab018.
6
Predicting the onset of breast cancer using mammogram imaging data with irregular boundary.
Biostatistics. 2023 Apr 14;24(2):358-371. doi: 10.1093/biostatistics/kxab032.
7
Principle ERP reduction and analysis: Estimating and using principle ERP waveforms underlying ERPs across tasks, subjects and electrodes.
Neuroimage. 2020 May 15;212:116630. doi: 10.1016/j.neuroimage.2020.116630. Epub 2020 Feb 20.
9
MFPCA: Multiscale Functional Principal Component Analysis.
Proc AAAI Conf Artif Intell. 2019 Jan-Feb;33:4320-4327. doi: 10.1609/aaai.v33i01.33014320.
10
Robust probabilistic classification applicable to irregularly sampled functional data.
Comput Stat Data Anal. 2019 Mar;131:37-49. doi: 10.1016/j.csda.2018.08.001. Epub 2018 Aug 11.

本文引用的文献

1
Functional Linear Model with Zero-value Coefficient Function at Sub-regions.
Stat Sin. 2013 Jan 1;23(1):25-50. doi: 10.5705/ss.2010.237.
2
Wavelet-based LASSO in functional linear regression.
J Comput Graph Stat. 2012 Jul 1;21(3):600-617. doi: 10.1080/10618600.2012.679241.
4
An analysis of variance of the pubertal and midgrowth spurts for length and width.
Ann Hum Biol. 1999 Jul-Aug;26(4):309-31. doi: 10.1080/030144699282642.
5
An analysis of the mid-growth and adolescent spurts of height based on acceleration.
Ann Hum Biol. 1985 Mar-Apr;12(2):129-48. doi: 10.1080/03014468500007631.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验