Craven Timothy W, Cho Min-Kyu, Traaseth Nathaniel J, Bonneau Richard, Kirshenbaum Kent
Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States.
Department of Biology, Center for Genomics and Systems Biology, New York University , 12 Waverly Place, New York, New York 10003, United States.
J Am Chem Soc. 2016 Feb 10;138(5):1543-50. doi: 10.1021/jacs.5b10285. Epub 2016 Jan 26.
The design of folded miniature proteins is predicated on establishing noncovalent interactions that direct the self-assembly of discrete thermostable tertiary structures. In this work, we describe how a network of cation-π interactions present in proteins containing "WSXWS motifs" can be emulated to stabilize the core of a miniature protein. This 19-residue protein sequence recapitulates a set of interdigitated arginine and tryptophan residues that stabilize a distinctive β-strand:loop:PPII-helix topology. Validation of the compact fold determined by NMR was carried out by mutagenesis of the cation-π network and by comparison to the corresponding disulfide-bridged structure. These results support the involvement of a coordinated set of cation-π interactions that stabilize the tertiary structure.
折叠型微型蛋白质的设计基于建立非共价相互作用,这种相互作用指导离散的热稳定三级结构的自组装。在这项工作中,我们描述了如何模拟包含“WSXWS基序”的蛋白质中存在的阳离子-π相互作用网络,以稳定微型蛋白质的核心。这个由19个残基组成的蛋白质序列概括了一组相互交错的精氨酸和色氨酸残基,它们稳定了一种独特的β-链:环:PPII-螺旋拓扑结构。通过对阳离子-π网络进行诱变并与相应的二硫键桥连结构进行比较,对由核磁共振确定的紧密折叠进行了验证。这些结果支持了一组协调的阳离子-π相互作用参与稳定三级结构。