Wang Li, Wang Xiaodong, Mao Shengcheng, Wu Hua, Guo Xia, Ji Yuan, Han Xiaodong
Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, 100124, P.R. China.
College of Electronic Information & Control Engineering, Beijing University of Technology, Beijing, 100124, P.R. China.
Nanoscale. 2016 Feb 21;8(7):4030-6. doi: 10.1039/c5nr06153a.
We present the surface plasmon polariton (SPP)-enhanced ultraviolet (UV) emission of an Au@SiO2/ZnO hybrid nanostructure. We achieved approximately 20- and 8-fold enhancements of the UV-emitting intensities from Au-SPP coupled nanometre- and micrometre-scaled ZnO wires through an optimized 5 nm-thick SiO2 spacer compared to that obtained from bare ZnO on a Si substrate without SPP coupling. Cathodoluminescence measurements and simulations demonstrated that the plasmonic hybrid nanostructure enables the strong localization of the SPP field, resulting in significantly enhanced UV emission. This plasmonic structure paves the way to nanoscale UV-optical lasers and sensors.
我们展示了一种Au@SiO2/ZnO混合纳米结构的表面等离激元极化激元(SPP)增强的紫外(UV)发射。与在没有SPP耦合的硅衬底上的裸ZnO相比,通过优化的5nm厚SiO2间隔层,我们实现了从Au-SPP耦合的纳米级和微米级ZnO线的UV发射强度提高了约20倍和8倍。阴极发光测量和模拟表明,等离子体混合纳米结构能够使SPP场强烈局域化,从而显著增强UV发射。这种等离子体结构为纳米级UV光学激光器和传感器铺平了道路。