Robertson A
Department of Psychology, University of Alberta, Edmonton, Canada.
Neurosci Biobehav Rev. 1989 Summer-Fall;13(2-3):163-70. doi: 10.1016/s0149-7634(89)80026-0.
Electrical stimulation of the major divisions of the prefrontal cortex, the mediodorsal and sulcal areas, can serve as a reinforcing stimulus. Studies of self-stimulation of the prefrontal cortex have produced behavioral, anatomical and pharmacological evidence that the substrate of these rewarding effects can be dissociated from that subserving self-stimulation of ventral diencephalic sites such as the lateral hypothalamus. Other studies indicate that within the prefrontal cortex itself, self-stimulation of the medial and sulcal divisions can be attributed to dissociable processes. These observations suggest the existence of multiple, largely autonomous prefrontal subsystems involved in reinforcement. This raises the question of the functional significance of such systems, and of their organization. An approach to this problem is to consider the relationship between the behavioral functions of the prefrontal divisions and the characteristics of stimulation-induced reward obtained at each site. Studies of the effects of restricted prefrontal lesions indicate that the medial and sulcal divisions can be dissociated according to their involvement in the control of distinct types of sensory and motor events. Further experiments indicate that damage to each division causes selective deficits in the learning of stimulus-reinforcer and response-reinforcer relations, depending in part on the nature of the reinforcing event. Conditioning experiments further show that the rewarding effects produced by stimulation of these areas are preferentially associated to sensory events which correspond to the functional specialization of each division. These data are interpreted to suggest that different rewarding events and/or different attributes of rewarding stimuli are processed by distinct systems which are reflected by the organization of dissociable self-stimulation pathways.