Siu Kin Lung, Gao Ling, Cai Hua
From the Divisions of Molecular Medicine and Cardiology, Departments of Anesthesiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095.
From the Divisions of Molecular Medicine and Cardiology, Departments of Anesthesiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095
J Biol Chem. 2016 Apr 15;291(16):8653-62. doi: 10.1074/jbc.M115.713149. Epub 2016 Jan 29.
The endothelium is exposed to various flow patterns such as vasoprotective unidirectional laminar shear stress (LSS) and atherogenic oscillatory shear stress (OSS). A software-controlled, valve-operated OsciFlow device with parallel chambers was used to apply LSS and OSS to endothelial cells. Although LSS inhibited superoxide over time, OSS time-dependently increased superoxide production from endothelial cells. Immunocytochemical staining revealed that, at resting state, p47phox colocalizes with NOX2, whereas NOXO1 colocalizes with NOX1. RNAi of p47phox had no effects on superoxide or NO production in response to OSS but significantly reduced NO production in LSS, implicating a p47phox-bound NADPH oxidase (NOX) in mediating basal NO production. Indeed, RNAi of p47phox inhibited endothelial nitric oxide synthase (eNOS) serine 1179 phosphorylation, whereas PEG-catalase scavenging of intracellular hydrogen peroxide or RNAi of NOX2 produced similar results, indicating a role of NOX2/p47phox-derived hydrogen peroxide in mediating the basal activity of NO production from eNOS. In contrast, RNAi of NOXO1 resulted in no significant changes in NO and superoxide levels in response to LSS but significantly reduced superoxide while increasing NO in response to OSS. Furthermore, we identified, for the first time, that OSS uncouples eNOS, which was corrected by RNAi of NOXO1. In summary, LSS activates the NOX2-p47phox complex to activate eNOS phosphorylation and NO production. OSS instead activates the NOX1-NOXO1 complex to uncouple eNOS. These results demonstrate differential roles of NOXs in modulating the redox state in response to different shear stresses, which may promote the development of novel therapeutic agents to mimic the protective effects of LSS while inhibiting the injurious effects of OSS.
内皮细胞会暴露于多种血流模式,如具有血管保护作用的单向层流切应力(LSS)和致动脉粥样硬化的振荡切应力(OSS)。使用一种软件控制、阀门操作的带有平行腔室的OsciFlow装置,将LSS和OSS施加于内皮细胞。虽然随着时间推移LSS会抑制超氧化物生成,但OSS会使内皮细胞的超氧化物生成随时间增加。免疫细胞化学染色显示,在静息状态下,p47phox与NOX2共定位,而NOXO1与NOX1共定位。p47phox的RNA干扰对OSS刺激下的超氧化物或一氧化氮生成没有影响,但显著降低了LSS刺激下的一氧化氮生成,这表明与p47phox结合的NADPH氧化酶(NOX)参与介导基础一氧化氮生成。实际上,p47phox的RNA干扰抑制了内皮型一氧化氮合酶(eNOS)丝氨酸1179位点的磷酸化,而聚乙二醇化过氧化氢酶清除细胞内过氧化氢或NOX2的RNA干扰产生了类似结果,表明NOX2/p47phox衍生的过氧化氢在介导eNOS基础一氧化氮生成活性中发挥作用。相反,NOXO1的RNA干扰对LSS刺激下的一氧化氮和超氧化物水平没有显著影响,但在OSS刺激下显著降低了超氧化物水平,同时增加了一氧化氮水平。此外,我们首次发现OSS会使eNOS解偶联,而这一现象可通过NOXO1的RNA干扰得到纠正。总之,LSS激活NOX2-p47phox复合物以激活eNOS磷酸化和一氧化氮生成。而OSS则激活NOX1-NOXO1复合物使eNOS解偶联。这些结果证明了NOXs在响应不同切应力调节氧化还原状态中的不同作用,这可能有助于开发新型治疗药物,以模拟LSS的保护作用,同时抑制OSS的有害作用。