Suppr超能文献

头部成像中光子计数光谱计算机断层扫描的光束质量优化:模拟研究

Optimization of beam quality for photon-counting spectral computed tomography in head imaging: simulation study.

作者信息

Chen Han, Xu Cheng, Persson Mats, Danielsson Mats

机构信息

Royal Institute of Technology (KTH) , Department of Physics, Stockholm 106 91, Sweden.

出版信息

J Med Imaging (Bellingham). 2015 Oct;2(4):043504. doi: 10.1117/1.JMI.2.4.043504. Epub 2015 Nov 6.

Abstract

Head computed tomography (CT) plays an important role in the comprehensive evaluation of acute stroke. Photon-counting spectral detectors, as promising candidates for use in the next generation of x-ray CT systems, allow for assigning more weight to low-energy x-rays that generally contain more contrast information. Most importantly, the spectral information can be utilized to decompose the original set of energy-selective images into several basis function images that are inherently free of beam-hardening artifacts, a potential advantage for further improving the diagnosis accuracy. We are developing a photon-counting spectral detector for CT applications. The purpose of this work is to determine the optimal beam quality for material decomposition in two head imaging cases: nonenhanced imaging and K-edge imaging. A cylindrical brain tissue of 16-cm diameter, coated by a 6-mm-thick bone layer and 2-mm-thick skin layer, was used as a head phantom. The imaging target was a 5-mm-thick blood vessel centered in the head phantom. In K-edge imaging, two contrast agents, iodine and gadolinium, with the same concentration ([Formula: see text]) were studied. Three parameters that affect beam quality were evaluated: kVp settings (50 to 130 kVp), filter materials ([Formula: see text] to 83), and filter thicknesses [0 to 2 half-value layer (HVL)]. The image qualities resulting from the varying x-ray beams were compared in terms of two figures of merit (FOMs): squared signal-difference-to-noise ratio normalized by brain dose ([Formula: see text]) and that normalized by skin dose ([Formula: see text]). For nonenhanced imaging, the results show that the use of the 120-kVp spectrum filtered by 2 HVL copper ([Formula: see text]) provides the best performance in both FOMs. When iodine is used in K-edge imaging, the optimal filter is 2 HVL iodine ([Formula: see text]) and the optimal kVps are 60 kVp in terms of [Formula: see text] and 75 kVp in terms of [Formula: see text]. A tradeoff of 65 kVp was proposed to lower the potential risk of skin injuries if a relatively long exposure time is necessarily performed in the iodinated imaging. In the case of gadolinium imaging, both SD and BD can be minimized at 120 kVp filtered with 2 HVL thulium ([Formula: see text]). The results also indicate that with the same concentration and their respective optimal spectrum, the values of [Formula: see text] and [Formula: see text] in gadolinium imaging are, respectively, around 3 and 10 times larger than those in iodine imaging. However, since gadolinium is used in much lower concentrations than iodine in the clinic, iodine may be a preferable candidate for K-edge imaging.

摘要

头部计算机断层扫描(CT)在急性中风的综合评估中起着重要作用。光子计数光谱探测器作为下一代X射线CT系统的有前景的候选者,能够对通常包含更多对比度信息的低能X射线赋予更大权重。最重要的是,光谱信息可用于将原始的能量选择图像集分解为几个本质上没有束硬化伪影的基函数图像,这是进一步提高诊断准确性的潜在优势。我们正在开发一种用于CT应用的光子计数光谱探测器。这项工作的目的是确定在两种头部成像情况(非增强成像和K边成像)下材料分解的最佳光束质量。一个直径为16厘米的圆柱形脑组织,覆盖着6毫米厚的骨层和2毫米厚的皮肤层,被用作头部模型。成像目标是位于头部模型中心的一个5毫米厚的血管。在K边成像中,研究了两种浓度相同([公式:见原文])的造影剂,碘和钆。评估了影响光束质量的三个参数:千伏峰值(kVp)设置(50至130 kVp)、滤过材料([公式:见原文]至83)和滤过厚度[0至2个半值层(HVL)]。根据两个品质因数(FOM)比较了不同X射线束产生的图像质量:经脑剂量归一化的信号差与噪声比的平方([公式:见原文])和经皮肤剂量归一化的该值([公式:见原文])。对于非增强成像,结果表明使用经2个HVL铜滤过的120 kVp光谱([公式:见原文])在两个FOM中都提供了最佳性能。当在K边成像中使用碘时,最佳滤过器是2个HVL碘([公式:见原文]),就[公式:见原文]而言最佳kVp为60 kVp,就[公式:见原文]而言为75 kVp。如果在碘化成像中必须进行相对较长的曝光时间,建议采用65 kVp的折衷值以降低皮肤损伤的潜在风险。在钆成像的情况下,在经2个HVL铥滤过的120 kVp时,标准差(SD)和脑剂量(BD)都可最小化([公式:见原文])。结果还表明,在相同浓度及其各自的最佳光谱下,钆成像中[公式:见原文]和[公式:见原文]的值分别比碘成像中的值大3倍和10倍左右。然而,由于在临床中钆的使用浓度比碘低得多,碘可能是K边成像的更优候选者。

相似文献

1
Optimization of beam quality for photon-counting spectral computed tomography in head imaging: simulation study.
J Med Imaging (Bellingham). 2015 Oct;2(4):043504. doi: 10.1117/1.JMI.2.4.043504. Epub 2015 Nov 6.
2
Photon counting x-ray imaging with K-edge filtered x-rays: A simulation study.
Med Phys. 2016 Mar;43(3):1385-400. doi: 10.1118/1.4941742.
3
Size-dependent scanning parameters (kVp and mAs) for photon-counting spectral CT system in pediatric imaging: simulation study.
Phys Med Biol. 2016 Jun 7;61(11):4105-26. doi: 10.1088/0031-9155/61/11/4105. Epub 2016 May 10.
4
Photon counting spectral CT: improved material decomposition with K-edge-filtered x-rays.
Phys Med Biol. 2012 Mar 21;57(6):1595-615. doi: 10.1088/0031-9155/57/6/1595. Epub 2012 Mar 7.
6
Photon-Counting Computed Tomography for Vascular Imaging of the Head and Neck: First In Vivo Human Results.
Invest Radiol. 2018 Mar;53(3):135-142. doi: 10.1097/RLI.0000000000000418.
7
A study to improve the image quality in low-dose computed tomography (SPECT) using filtration.
Indian J Nucl Med. 2011 Jan;26(1):14-21. doi: 10.4103/0972-3919.84595.
8
A prototype spatial-spectral CT system for material decomposition with energy-integrating detectors.
Med Phys. 2021 Oct;48(10):6401-6411. doi: 10.1002/mp.14930. Epub 2021 Jun 6.

引用本文的文献

2
Photon-counting computed tomography in radiology.
Pol J Radiol. 2024 Sep 11;89:e433-e442. doi: 10.5114/pjr/191743. eCollection 2024.
3
Spectral optimization using fast kV switching and filtration for photon counting CT with realistic detector responses: a simulation study.
J Med Imaging (Bellingham). 2024 Dec;11(Suppl 1):S12805. doi: 10.1117/1.JMI.11.S1.S12805. Epub 2024 Jul 25.
4
Noise correlation and its impact on the performance of multi-material decomposition-based spectral imaging in photon-counting CT.
J Appl Clin Med Phys. 2023 Jan;24(1):e13830. doi: 10.1002/acm2.13830. Epub 2022 Nov 17.
5
Spectral Photon Counting CT: Imaging Algorithms and Performance Assessment.
IEEE Trans Radiat Plasma Med Sci. 2021 Jul;5(4):453-464. doi: 10.1109/trpms.2020.3007380. Epub 2020 Jul 7.
6
Detective quantum efficiency of photon-counting CdTe and Si detectors for computed tomography: a simulation study.
J Med Imaging (Bellingham). 2020 Jul;7(4):043501. doi: 10.1117/1.JMI.7.4.043501. Epub 2020 Jul 17.
7
Multi-energy computed tomography and material quantification: Current barriers and opportunities for advancement.
Med Phys. 2020 Aug;47(8):3752-3771. doi: 10.1002/mp.14241. Epub 2020 Jun 23.
8
A framework for performance characterization of energy-resolving photon-counting detectors.
Med Phys. 2018 Nov;45(11):4897-4915. doi: 10.1002/mp.13172. Epub 2018 Oct 12.
9
Estimation of signal and noise for a whole-body research photon-counting CT system.
J Med Imaging (Bellingham). 2017 Apr;4(2):023505. doi: 10.1117/1.JMI.4.2.023505. Epub 2017 Jun 22.
10
Generation and analysis of clinically relevant breast imaging x-ray spectra.
Med Phys. 2017 Jun;44(6):2148-2160. doi: 10.1002/mp.12222. Epub 2017 May 4.

本文引用的文献

2
Intravenous Iodinated Contrast Agents Amplify DNA Radiation Damage at CT.
Radiology. 2015 Jun;275(3):692-7. doi: 10.1148/radiol.14132478. Epub 2015 Feb 4.
3
Energy-resolved CT imaging with a photon-counting silicon-strip detector.
Phys Med Biol. 2014 Nov 21;59(22):6709-27. doi: 10.1088/0022-3727/59/22/6709. Epub 2014 Oct 20.
4
Optimal frequency-based weighting for spectral x-ray projection imaging.
IEEE Trans Med Imaging. 2015 Mar;34(3):779-87. doi: 10.1109/TMI.2014.2360932. Epub 2014 Sep 30.
6
Theoretical comparison of the iodine quantification accuracy of two spectral CT technologies.
IEEE Trans Med Imaging. 2014 Feb;33(2):556-65. doi: 10.1109/TMI.2013.2290198. Epub 2013 Nov 8.
7
Toward quantifying the composition of soft tissues by spectral CT with Medipix3.
Med Phys. 2012 Nov;39(11):6847-57. doi: 10.1118/1.4760773.
9
Performance evaluation of a sub-millimetre spectrally resolved CT system on high- and low-frequency imaging tasks: a simulation.
Phys Med Biol. 2012 Apr 21;57(8):2373-91. doi: 10.1088/0031-9155/57/8/2373. Epub 2012 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验