Department of Mechanical Engineering, ‡Department of Chemical Engineering, §Department of Materials Science and Engineering, Texas A&M University , College Station, Texas 77843, United States.
ACS Appl Mater Interfaces. 2016 Feb;8(7):4700-8. doi: 10.1021/acsami.5b11803. Epub 2016 Feb 15.
The precipitation of lithium sulfide (Li2S) on the Li metal anode surface adversely impacts the performance of lithium-sulfur (Li-S) batteries. In this study, a first-principles approach including density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations is employed to theoretically elucidate the Li2S/Li metal surface interactions and the nucleation and growth of a Li2S film on the anode surface due to long-chain polysulfide decomposition during battery operation. DFT analyses of the energetic properties and electronic structures demonstrate that a single molecule adsorption on Li surface releases energy forming chemical bonds between the S atoms and Li atoms from the anode surface. Reaction pathways of the Li2S film formation on Li metal surfaces are investigated based on DFT calculations. It is found that a distorted Li2S (111) plane forms on a Li(110) surface and a perfect Li2S (111) plane forms on a Li(111) surface. The total energy of the system decreases along the reaction pathway; hence Li2S film formation on the Li anode surface is thermodynamically favorable. The calculated difference charge density of the Li2S film/Li surface suggests that the precipitated film would interact with the Li anode via strong chemical bonds. AIMD simulations reveal the role of the anode surface structure and the origin of the Li2S formation via decomposition of Li2S8 polysulfide species formed at the cathode side and dissolved in the electrolyte medium in which they travel to the anode side during battery cycling.
硫化锂 (Li2S) 在锂金属阳极表面的沉淀会对锂硫 (Li-S) 电池的性能产生不利影响。在这项研究中,采用了包括密度泛函理论 (DFT) 和第一性原理分子动力学 (AIMD) 模拟在内的理论方法,从理论上阐明了 Li2S/Li 金属表面的相互作用以及在电池运行过程中由于长链多硫化物分解而在阳极表面上 Li2S 膜的成核和生长过程。通过对能量特性和电子结构的 DFT 分析表明,单个分子在 Li 表面的吸附会释放能量,从而在 S 原子和来自阳极表面的 Li 原子之间形成化学键。基于 DFT 计算研究了 Li 金属表面上 Li2S 薄膜形成的反应途径。结果发现,在 Li(110)表面上形成扭曲的 Li2S(111)平面,而在 Li(111)表面上形成完美的 Li2S(111)平面。系统的总能量沿反应途径降低;因此,Li2S 薄膜在 Li 阳极表面上的形成在热力学上是有利的。Li2S 薄膜/Li 表面的差分电荷密度计算表明,沉淀的薄膜将通过与 Li 阳极的强化学键相互作用。AIMD 模拟揭示了阳极表面结构的作用以及在电池循环过程中,在阴极侧形成并溶解在电解质介质中并迁移到阳极侧的 Li2S8 多硫化物物种分解导致 Li2S 形成的起源。