Suppr超能文献

基于固定化酚红的聚乙烯醇膜荧光猝灭检测硝基芳香族炸药的光学化学传感器的设计与制备

Design and fabrication of optical chemical sensor for detection of nitroaromatic explosives based on fluorescence quenching of phenol red immobilized poly(vinyl alcohol) membrane.

作者信息

Zarei Ali Reza, Ghazanchayi Behnam

机构信息

Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 15875-1774, Tehran, Iran.

Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, P.O. Box 15875-1774, Tehran, Iran.

出版信息

Talanta. 2016 Apr 1;150:162-8. doi: 10.1016/j.talanta.2015.12.014. Epub 2015 Dec 17.

Abstract

The present study developed a new optical chemical sensor for detection of nitroaromatic explosives in liquid phase. The method is based on the fluorescence quenching of phenol red as fluorophore in a poly(vinyl alcohol) (PVA) membrane in the presence of nitroaromatic explosives as quenchers, e.g., 2,4,6-trinitrotoluene (TNT), 2,4-dinitrotoluene (2,4-DNT), 4-nitrotoluene (4-NT), 2,4,6-trinitrobenzene (TNB), and nitrobenzene (NB). For chemical immobilization of phenol red in PVA, phenol red reacted with formaldehyde to produce hydroxymethyl groups and then attached to PVA membrane through the hydroxymethyl groups. The optical sensor showed strong quenching of nitroaromatic explosives. A Stern-Volmer graph for each explosive was constructed and showed that the range of concentration from 5.0 × 10(-6) to 2.5 × 10(-4) mol L(-1) was linear for each explosive and sensitivity varied as TNB >TNT>2,4-DNT>NB>4-NT. The response time of the sensor was within 1 min. The proposed sensor showed good reversibility and reproducibility.

摘要

本研究开发了一种用于检测液相中硝基芳香族炸药的新型光学化学传感器。该方法基于在硝基芳香族炸药作为猝灭剂(如2,4,6-三硝基甲苯(TNT)、2,4-二硝基甲苯(2,4-DNT)、4-硝基甲苯(4-NT)、2,4,6-三硝基苯(TNB)和硝基苯(NB))存在的情况下,酚红作为荧光团在聚乙烯醇(PVA)膜中的荧光猝灭。为了将酚红化学固定在PVA中,酚红与甲醛反应生成羟甲基,然后通过羟甲基附着在PVA膜上。该光学传感器对硝基芳香族炸药表现出强烈的猝灭作用。构建了每种炸药的Stern-Volmer图,结果表明,每种炸药在5.0×10⁻⁶至2.5×10⁻⁴mol L⁻¹的浓度范围内呈线性,灵敏度变化为TNB>TNT>2,4-DNT>NB>4-NT。该传感器的响应时间在1分钟内。所提出的传感器表现出良好的可逆性和重现性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验