Vashaghian Mahshid, Ruiz-Zapata Alejandra M, Kerkhof Manon H, Zandieh-Doulabi Behrouz, Werner Arie, Roovers Jan Paul, Smit Theo H
Department of Orthopedic Surgery, VU University Medical Center, MOVE Research Institute, Amsterdam, The Netherlands.
Department of Oral Cell Biology, ACTA-University of Amsterdam and VU University, MOVE Research Institute, Amsterdam, The Netherlands.
Neurourol Urodyn. 2017 Mar;36(3):565-573. doi: 10.1002/nau.22969. Epub 2016 Feb 3.
The use of knitted, polypropylene meshes for the surgical treatment of pelvic organ prolapse (POP) is frequently accompanied by severe complications. Looking for alternatives, we studied the potential of three different electrospun matrices in supporting the adhesion, proliferation, and matrix deposition of POP and non-POP fibroblasts, the most important cells to produce extracellular matrix (ECM), in vitro.
We electrospun three commonly used medical materials: nylon; poly (lactide-co-glycolide) blended with poly-caprolactone (PLGA/PCL); and poly-caprolactone blended with gelatin (PCL/Gelatin). The matrices were characterized for their microstructure, hydrophilicity, and mechanical properties. We seeded POP and non-POP fibroblasts from patients with POP and we determined cellular responses and ECM deposition.
All matrices had >65% porosity, homogenous microstructures, and close to sufficient tensile strength for pelvic floor repair: 15.4 ± 3.3 MPa for Nylon; 12.4 ± 1.6 MPa for PLGA/PCL; and 3.5 ± 0.9 MPa for PCL/Gelatin. Both the POP and non-POP cells adhered to the electrospun matrices; they proliferated well and produced ample ECM. Overall, the best in vitro performance appeared to be on nylon, presumably because this was the most hydrophilic material with the thinnest fibers.
Electrospun nanofibrous matrices show feasible mechanical strength and great biocompatibility for POP and non-POP fibroblasts to produce their ECM in vitro and, thus, may be candidates for a new generation of implants for pelvic floor repair. Further studies on electrospun nanofibrous matrices should focus on mechanical and immunological conditions that would be presented in vivo. Neurourol. Urodynam. 36:565-573, 2017. © 2016 Wiley Periodicals, Inc.
使用针织聚丙烯网片进行盆腔器官脱垂(POP)的外科治疗常伴有严重并发症。为寻找替代方案,我们研究了三种不同的电纺基质在体外支持POP和非POP成纤维细胞(产生细胞外基质(ECM)的最重要细胞)黏附、增殖及基质沉积的潜力。
我们对三种常用医用材料进行电纺:尼龙;聚(丙交酯-共-乙交酯)与聚己内酯共混物(PLGA/PCL);聚己内酯与明胶共混物(PCL/明胶)。对这些基质的微观结构、亲水性和力学性能进行了表征。我们接种了来自POP患者的POP和非POP成纤维细胞,并测定细胞反应和ECM沉积情况。
所有基质孔隙率均大于65%,微观结构均匀,且具有接近足够的盆底修复拉伸强度:尼龙为15.4±3.3MPa;PLGA/PCL为12.4±1.6MPa;PCL/明胶为3.5±0.9MPa。POP和非POP细胞均能黏附于电纺基质;它们增殖良好并产生大量ECM。总体而言,体外性能最佳的似乎是尼龙,可能是因为它是亲水性最强且纤维最细的材料。
电纺纳米纤维基质显示出可行的机械强度以及对POP和非POP成纤维细胞在体外产生其ECM具有良好的生物相容性,因此可能成为新一代盆底修复植入物的候选材料。对电纺纳米纤维基质的进一步研究应聚焦于体内可能出现的力学和免疫条件。《神经泌尿学与尿动力学》36:565 - 573,2017年。©2016威利期刊公司