Tuscher Jennifer J, Luine Victoria, Frankfurt Maya, Frick Karyn M
Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211.
Department of Psychology, Hunter College of the City University of New York, New York, New York 10065, and.
J Neurosci. 2016 Feb 3;36(5):1483-9. doi: 10.1523/JNEUROSCI.3135-15.2016.
Dendritic spine plasticity underlies the formation and maintenance of memories. Both natural fluctuations and systemic administration of 17β-estradiol (E2) alter spine density in the dorsal hippocampus (DH) of rodents. DH E2 infusion enhances hippocampal-dependent memory by rapidly activating extracellular signal-regulated kinase (ERK)-dependent signaling of mammalian target of rapamycin (mTOR), a key protein synthesis pathway involved in spine remodeling. Here, we investigated whether infusion of E2 directly into the DH drives spine changes in the DH and other brain regions, and identified cell-signaling pathways that mediate these effects. E2 significantly increased basal and apical spine density on CA1 pyramidal neurons 30 min and 2 h after infusion. DH E2 infusion also significantly increased basal spine density on pyramidal neurons in the medial prefrontal cortex (mPFC) 2 h later, suggesting that E2-mediated activity in the DH drives mPFC spinogenesis. The increase in CA1 and mPFC spine density observed 2 h after intracerebroventricular infusion of E2 was blocked by DH infusion of an ERK or mTOR inhibitor. DH E2 infusion did not affect spine density in the dentate gyrus or ventromedial hypothalamus, suggesting specific effects of E2 on the DH and mPFC. Collectively, these data demonstrate that DH E2 treatment elicits ERK- and mTOR-dependent spinogenesis on CA1 and mPFC pyramidal neurons, effects that may support the memory-enhancing effects of E2.
Although systemically injected 17β-estradiol (E2) increases CA1 dendritic spine density, the molecular mechanisms regulating E2-induced spinogenesis in vivo are largely unknown. We found that E2 infused directly into the dorsal hippocampus (DH) increased CA1 spine density 30 min and 2 h later. Surprisingly, DH E2 infusion also increased spine density in the medial prefrontal cortex (mPFC), suggesting that estrogenic regulation of the DH influences mPFC spinogenesis. Moreover, inhibition of ERK and mTOR activation in the DH prevented E2 from increasing DH and mPFC spines, demonstrating that DH ERK and mTOR activation is necessary for E2-induced spinogenesis in the DH and mPFC. These findings provide novel insights into the molecular mechanisms through which E2 mediates dendritic spine density in CA1 and mPFC.
树突棘可塑性是记忆形成和维持的基础。自然波动以及系统性给予17β-雌二醇(E2)均可改变啮齿动物背侧海马体(DH)中的棘密度。向DH输注E2可通过快速激活细胞外信号调节激酶(ERK)依赖的雷帕霉素哺乳动物靶标(mTOR)信号传导来增强海马体依赖的记忆,mTOR是参与棘重塑的关键蛋白质合成途径。在此,我们研究了直接向DH输注E2是否会驱动DH和其他脑区的棘变化,并确定了介导这些效应的细胞信号通路。输注后30分钟和2小时,E2显著增加了CA1锥体神经元上的基底和顶端棘密度。向DH输注E2 2小时后,内侧前额叶皮质(mPFC)锥体神经元上的基底棘密度也显著增加,这表明DH中E2介导的活动驱动了mPFC的棘形成。脑室内输注E2 2小时后观察到的CA1和mPFC棘密度增加被向DH输注ERK或mTOR抑制剂所阻断。向DH输注E2不影响齿状回或腹内侧下丘脑的棘密度,表明E2对DH和mPFC有特异性作用。总体而言,这些数据表明,向DH给予E2可在CA1和mPFC锥体神经元上引发ERK和mTOR依赖的棘形成,这些效应可能支持E2的记忆增强作用。
尽管系统性注射17β-雌二醇(E2)会增加CA1树突棘密度,但体内调节E2诱导的棘形成的分子机制在很大程度上尚不清楚。我们发现,直接向背侧海马体(DH)输注E2在30分钟和2小时后增加了CA1棘密度。令人惊讶的是,向DH输注E2也增加了内侧前额叶皮质(mPFC)的棘密度,这表明DH的雌激素调节会影响mPFC的棘形成。此外,抑制DH中的ERK和mTOR激活可阻止E2增加DH和mPFC的棘,这表明DH中的ERK和mTOR激活是E2诱导DH和mPFC棘形成所必需的。这些发现为E2介导CA1和mPFC中树突棘密度的分子机制提供了新的见解。