Suppr超能文献

基于转录组学的虎眼万年青中与(2S)-松属素生物合成相关酶的发现、功能表征及其在代谢工程中的应用

Transcriptome-enabled discovery and functional characterization of enzymes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum and their application for metabolic engineering.

作者信息

Guo Lei, Chen Xi, Li Li-Na, Tang Wei, Pan Yi-Ting, Kong Jian-Qiang

机构信息

Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products), Beijing, 100050, China.

School of Medicine of Wuhan University, Wuhan, China.

出版信息

Microb Cell Fact. 2016 Feb 4;15:27. doi: 10.1186/s12934-016-0424-8.

Abstract

BACKGROUND

(2S)-Pinocembrin is a chiral flavanone with versatile pharmacological and biological activities. Its health-promoting effects have spurred on research effects on the microbial production of (2S)-pinocembrin. However, an often-overlooked salient feature in the analysis of microbial (2S)-pinocembrin is its chirality.

RESULTS

Here, we presented a full characterization of absolute configuration of microbial (2S)-pinocembrin from engineered Escherichia coli. Specifically, a transcriptome-wide search for genes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum, a plant rich in flavonoids, was first performed in the present study. A total of 104,180 unigenes were finally generated with an average length of 520 bp. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway mapping assigned 26 unigenes, representing three enzyme families of 4-coumarate:coenzyme A ligase (4CL), chalcone synthase (CHS) and chalcone isomerase(CHI), onto (2S)-pinocembrin biosynthetic pathway. A total of seven, three and one full-length candidates encoding 4CL, CHS and CHI were then verified by reverse transcription polymerase chain reaction, respectively. These candidates were screened by functional expression in E. coli individual or coupled multienzyme reaction systems based on metabolic engineering processes. Oc4CL1, OcCHS2 and OcCHI were identified to be bona fide genes encoding respective pathway enzymes of (2S)-pinocembrin biosynthesis. Then Oc4CL1, OcCHS2 and MsCHI from Medicago sativa, assembled as artificial gene clusters in different organizations, were used for fermentation production of (2S)-pinocembrin in E. coli. The absolute configuration of the resulting microbial pinocembrin at C-2 was assigned to be 2S-configured by combination of retention time, UV spectrum, LC-MS, NMR, optical rotation and circular dichroism spectroscopy. Improvement of (2S)-pinocembrin titres was then achieved by optimization of gene organizations, using of codon-optimized pathway enzymes and addition of cerulenin for increasing intracellular malonyl CoA pools. Overall, the optimized strain can produce (2S)-pinocembrin of 36.92 ± 4.1 mg/L.

CONCLUSIONS

High titre of (2S)-pinocembrin can be obtained from engineered E. coli by an efficient method. The fermentative production of microbial (2S)-pinocembrin in E. coli paved the way for yield improvement and further pharmacological testing.

摘要

背景

(2S)-松属素是一种具有多种药理和生物活性的手性黄烷酮。其对健康的促进作用激发了对微生物生产(2S)-松属素的研究。然而,在微生物(2S)-松属素分析中一个经常被忽视的显著特征是其手性。

结果

在此,我们对工程化大肠杆菌中微生物(2S)-松属素的绝对构型进行了全面表征。具体而言,本研究首先在富含黄酮类化合物的植物虎眼万年青中进行了全转录组范围的与(2S)-松属素生物合成相关基因的搜索。最终共产生了104,180个单基因,平均长度为520 bp。京都基因与基因组百科全书(KEGG)通路映射将26个单基因,代表4-香豆酸:辅酶A连接酶(4CL)、查尔酮合酶(CHS)和查尔酮异构酶(CHI)这三个酶家族,定位到(2S)-松属素生物合成途径上。然后分别通过逆转录聚合酶链反应验证了总共七个、三个和一个编码4CL、CHS和CHI的全长候选基因。基于代谢工程过程,通过在大肠杆菌个体或耦合多酶反应系统中的功能表达对这些候选基因进行筛选。Oc4CL1、OcCHS2和OcCHI被鉴定为编码(2S)-松属素生物合成各自途径酶的真正基因。然后将来自紫花苜蓿的Oc4CL1、OcCHS2和MsCHI组装成不同组合的人工基因簇,用于在大肠杆菌中发酵生产(2S)-松属素。通过保留时间、紫外光谱、液相色谱-质谱、核磁共振、旋光和圆二色光谱的组合,将所得微生物松属素在C-2处的绝对构型确定为2S构型。然后通过优化基因组合、使用密码子优化的途径酶以及添加浅蓝菌素以增加细胞内丙二酰辅酶A库,实现了(2S)-松属素产量的提高。总体而言,优化后的菌株能够产生36.92±4.1 mg/L的(2S)-松属素。

结论

通过一种高效方法可从工程化大肠杆菌中获得高产量的(2S)-松属素。大肠杆菌中微生物(2S)-松属素的发酵生产为产量提高和进一步的药理测试铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30c4/4743118/5ba2f844d575/12934_2016_424_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验