Moody G, McDonald C, Feldman A, Harvey T, Mirin R P, Silverman K L
National Institute of Standards and Technology, Boulder, Colorado 80305, USA.
Phys Rev Lett. 2016 Jan 22;116(3):037402. doi: 10.1103/PhysRevLett.116.037402.
Minimizing decoherence due to coupling of a quantum system to its fluctuating environment is at the forefront of quantum information and photonics research. Nature sets the ultimate limit, however, given by the strength of the system's coupling to the electromagnetic field. Here, we establish the ability to electronically control this coupling and enhance the optical coherence time of the charged exciton transition in quantum dots embedded in a photonic waveguide. By manipulating the electronic wave functions through an applied lateral electric field, we increase the coherence time from ∼1.4 to ∼2.7 ns. Numerical calculations reveal that longer coherence arises from the separation of charge carriers by up to ∼6 nm, which leads to a 30% weaker transition dipole moment. The ability to electronically control the coherence time opens new avenues for quantum communication and novel coupling schemes between distant qubits.
将量子系统与其波动环境的耦合所导致的退相干降至最低,是量子信息和光子学研究的前沿课题。然而,自然设定了最终极限,这一极限由系统与电磁场的耦合强度决定。在此,我们展示了通过电子方式控制这种耦合并延长嵌入光子波导中的量子点中带电激子跃迁的光学相干时间的能力。通过施加横向电场来操纵电子波函数,我们将相干时间从约1.4纳秒延长至约2.7纳秒。数值计算表明,更长的相干性源于电荷载流子分离达约6纳米,这导致跃迁偶极矩减弱30%。通过电子方式控制相干时间的能力为量子通信以及远距离量子比特之间的新型耦合方案开辟了新途径。