Suppr超能文献

带电量子点中激子相干时间的电子增强

Electronic Enhancement of the Exciton Coherence Time in Charged Quantum Dots.

作者信息

Moody G, McDonald C, Feldman A, Harvey T, Mirin R P, Silverman K L

机构信息

National Institute of Standards and Technology, Boulder, Colorado 80305, USA.

出版信息

Phys Rev Lett. 2016 Jan 22;116(3):037402. doi: 10.1103/PhysRevLett.116.037402.

Abstract

Minimizing decoherence due to coupling of a quantum system to its fluctuating environment is at the forefront of quantum information and photonics research. Nature sets the ultimate limit, however, given by the strength of the system's coupling to the electromagnetic field. Here, we establish the ability to electronically control this coupling and enhance the optical coherence time of the charged exciton transition in quantum dots embedded in a photonic waveguide. By manipulating the electronic wave functions through an applied lateral electric field, we increase the coherence time from ∼1.4 to ∼2.7  ns. Numerical calculations reveal that longer coherence arises from the separation of charge carriers by up to ∼6  nm, which leads to a 30% weaker transition dipole moment. The ability to electronically control the coherence time opens new avenues for quantum communication and novel coupling schemes between distant qubits.

摘要

将量子系统与其波动环境的耦合所导致的退相干降至最低,是量子信息和光子学研究的前沿课题。然而,自然设定了最终极限,这一极限由系统与电磁场的耦合强度决定。在此,我们展示了通过电子方式控制这种耦合并延长嵌入光子波导中的量子点中带电激子跃迁的光学相干时间的能力。通过施加横向电场来操纵电子波函数,我们将相干时间从约1.4纳秒延长至约2.7纳秒。数值计算表明,更长的相干性源于电荷载流子分离达约6纳米,这导致跃迁偶极矩减弱30%。通过电子方式控制相干时间的能力为量子通信以及远距离量子比特之间的新型耦合方案开辟了新途径。

相似文献

1
Electronic Enhancement of the Exciton Coherence Time in Charged Quantum Dots.
Phys Rev Lett. 2016 Jan 22;116(3):037402. doi: 10.1103/PhysRevLett.116.037402.
3
Coherent spin-photon coupling using a resonant exchange qubit.
Nature. 2018 Aug;560(7717):179-184. doi: 10.1038/s41586-018-0365-y. Epub 2018 Jul 25.
4
Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots.
Phys Rev Lett. 2005 Jun 10;94(22):227403. doi: 10.1103/PhysRevLett.94.227403. Epub 2005 Jun 9.
5
Tunable phononic coupling in excitonic quantum emitters.
Nat Nanotechnol. 2023 Sep;18(9):1020-1026. doi: 10.1038/s41565-023-01410-6. Epub 2023 Jun 1.
6
Ultrafast optical control of individual quantum dot spin qubits.
Rep Prog Phys. 2013 Sep;76(9):092501. doi: 10.1088/0034-4885/76/9/092501. Epub 2013 Sep 4.
8
Microcavity controlled coupling of excitonic qubits.
Nat Commun. 2013;4:1747. doi: 10.1038/ncomms2764.
10
Decoherence in Molecular Electron Spin Qubits: Insights from Quantum Many-Body Simulations.
J Phys Chem Lett. 2020 Mar 19;11(6):2074-2078. doi: 10.1021/acs.jpclett.0c00193. Epub 2020 Mar 2.

引用本文的文献

2
Quadrature Demodulation of a Quantum Dot Optical Response to Faint Light Fields.
Optica. 2016 Dec;3(12):1397-1403. doi: 10.1364/OPTICA.3.001397. Epub 2016 Nov 17.

本文引用的文献

1
Observation of entanglement between a quantum dot spin and a single photon.
Nature. 2012 Nov 15;491(7424):426-30. doi: 10.1038/nature11573.
2
Externally mode-matched cavity quantum electrodynamics with charge-tunable quantum dots.
Phys Rev Lett. 2009 Mar 6;102(9):097403. doi: 10.1103/PhysRevLett.102.097403. Epub 2009 Mar 5.
3
Complete quantum control of a single quantum dot spin using ultrafast optical pulses.
Nature. 2008 Nov 13;456(7219):218-21. doi: 10.1038/nature07530.
4
Control of the oscillator strength of the exciton in a single InGaN-GaN quantum dot.
Phys Rev Lett. 2007 Nov 9;99(19):197403. doi: 10.1103/PhysRevLett.99.197403.
5
Quantum nature of a strongly coupled single quantum dot-cavity system.
Nature. 2007 Feb 22;445(7130):896-9. doi: 10.1038/nature05586. Epub 2007 Jan 28.
6
Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal.
Phys Rev Lett. 2005 Jul 1;95(1):013904. doi: 10.1103/PhysRevLett.95.013904.
7
Optical control of excitons in a pair of quantum dots coupled by the dipole-dipole interaction.
Phys Rev Lett. 2005 Apr 8;94(13):137404. doi: 10.1103/PhysRevLett.94.137404.
8
Strong coupling in a single quantum dot-semiconductor microcavity system.
Nature. 2004 Nov 11;432(7014):197-200. doi: 10.1038/nature02969.
9
Entanglement formation and violation of Bell's inequality with a semiconductor single photon source.
Phys Rev Lett. 2004 Jan 23;92(3):037903. doi: 10.1103/PhysRevLett.92.037903. Epub 2004 Jan 22.
10
Ultralong dephasing time in InGaAs quantum dots.
Phys Rev Lett. 2001 Oct 8;87(15):157401. doi: 10.1103/PhysRevLett.87.157401. Epub 2001 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验