Chan Jeannine, Oshiro Tyler, Thomas Sarah, Higa Allyson, Black Stephen, Todorovic Aleksandar, Elbarbry Fawzy, Harrelson John P
Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.C., T.O., A.H., S.B.); and School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (S.T., A.H., S.B., A.T., F.E., J.P.H.).
Chemistry Department, Pacific University Oregon, Forest Grove, Oregon (J.C., T.O., A.H., S.B.); and School of Pharmacy, Pacific University Oregon, Hillsboro, Oregon (S.T., A.H., S.B., A.T., F.E., J.P.H.)
Drug Metab Dispos. 2016 Apr;44(4):534-43. doi: 10.1124/dmd.115.067942. Epub 2016 Feb 5.
Human exposure to trans-cinnamic aldehyde [t-CA; cinnamaldehyde; cinnamal; (E)-3-phenylprop-2-enal] is common through diet and through the use of cinnamon powder for diabetes and to provide flavor and scent in commercial products. We evaluated the likelihood of t-CA to influence metabolism by inhibition of P450 enzymes. IC50 values from recombinant enzymes indicated that an interaction is most probable for CYP2A6 (IC50 = 6.1 µM). t-CA was 10.5-fold more selective for human CYP2A6 than for CYP2E1; IC50 values for P450s 1A2, 2B6, 2C9, 2C19, 2D6, and 3A4 were 15.8-fold higher or more. t-CA is a type I ligand for CYP2A6 (KS = 14.9 µM). Inhibition of CYP2A6 by t-CA was metabolism-dependent; inhibition required NADPH and increased with time. Glutathione lessened the extent of inhibition modestly and statistically significantly. The carbon monoxide binding spectrum was dramatically diminished after exposure to NADPH and t-CA, suggesting degradation of the heme or CYP2A6 apoprotein. Using a static model and mechanism-based inhibition parameters (K(I) = 18.0 µM; k(inact) = 0.056 minute(-1)), changes in the area under the concentration-time curve (AUC) for nicotine and letrozole were predicted in the presence of t-CA (0.1 and 1 µM). The AUC fold-change ranged from 1.1 to 3.6. In summary, t-CA is a potential source of pharmacokinetic variability for CYP2A6 substrates due to metabolism-dependent inhibition, especially in scenarios when exposure to t-CA is elevated due to high dietary exposure, or when cinnamon is used as a treatment of specific disease states (e.g., diabetes).
人类通过饮食以及使用肉桂粉治疗糖尿病和在商业产品中提供风味和香气而普遍接触反式肉桂醛[t-CA;肉桂醛;桂皮醛;(E)-3-苯基-2-丙烯醛]。我们评估了t-CA通过抑制P450酶影响代谢的可能性。重组酶的IC50值表明,CYP2A6(IC50 = 6.1 µM)最有可能发生相互作用。t-CA对人CYP2A6的选择性比对CYP2E1高10.5倍;P450 1A2、2B6、2C9、2C19、2D6和3A4的IC50值高15.8倍或更多。t-CA是CYP2A6的I型配体(KS = 14.9 µM)。t-CA对CYP2A6的抑制作用依赖于代谢;抑制作用需要NADPH,并随时间增加。谷胱甘肽适度且在统计学上显著降低了抑制程度。暴露于NADPH和t-CA后,一氧化碳结合光谱显著降低,表明血红素或CYP2A6脱辅基蛋白发生降解。使用静态模型和基于机制的抑制参数(K(I) = 18.0 µM;k(inact) = 0.056分钟(-1)),预测了在存在t-CA(0.1和1 µM)的情况下尼古丁和来曲唑浓度-时间曲线下面积(AUC)的变化。AUC变化倍数范围为1.1至3.6。总之,由于代谢依赖性抑制,t-CA是CYP2A6底物药代动力学变异性的潜在来源,特别是在因高饮食暴露导致t-CA暴露增加的情况下,或当肉桂用作特定疾病状态(如糖尿病)的治疗方法时。