Suppr超能文献

pMINERVA:一种用于将单链抗体片段(scFv)体内重组到IgG分子中的供体-受体系统。

pMINERVA: A donor-acceptor system for the in vivo recombineering of scFv into IgG molecules.

作者信息

Batonick M, Kiss M M, Fuller E P, Magadan C M, Holland E G, Zhao Q, Wang D, Kay B K, Weiner M P

机构信息

AxioMx, Inc., 688 E. Main St., Branford, CT 06405, United States.

AxioMx, Inc., 688 E. Main St., Branford, CT 06405, United States.

出版信息

J Immunol Methods. 2016 Apr;431:22-30. doi: 10.1016/j.jim.2016.02.003. Epub 2016 Feb 3.

Abstract

Phage display is the most widely used method for selecting binding molecules from recombinant antibody libraries. However, validation of the phage antibodies often requires early production of the cognate full-length immunoglobulin G (IgG). The conversion of phage library outputs to a full immunoglobulin via standard subcloning is time-consuming and limits the number of clones that can be evaluated. We have developed a novel system to convert scFvs from a phage display vector directly into IgGs without any in vitro subcloning steps. This new vector system, named pMINERVA, makes clever use of site-specific bacteriophage integrases that are expressed in Escherichia coli and intron splicing that occurs within mammalian cells. Using this system, a phage display vector contains both bacterial and mammalian regulatory regions that support antibody expression in E. coli and mammalian cells. A single-chain variable fragment (scFv) antibody is expressed on the surface of bacteriophage M13 as a genetic fusion to the gpIII coat protein. The scFv is converted to an IgG that can be expressed in mammalian cells by transducing a second E. coli strain. In that strain, the phiC31 recombinase fuses the heavy chain constant domain from an acceptor plasmid to the heavy chain variable domain and introduces controlling elements upstream of the light chain variable domain. Splicing in mammalian cells removes a synthetic intron containing the M13 gpIII gene to produce the fusion of the light chain variable domain to the constant domain. We show that phage displaying a scFv and recombinant IgGs generated using this system are expressed at wild-type levels and retain normal function. Use of the pMINERVA completely eliminates the labor-intensive subcloning and DNA sequence confirmation steps currently needed to convert a scFv into a functional IgG Ab.

摘要

噬菌体展示是从重组抗体文库中筛选结合分子最广泛使用的方法。然而,噬菌体抗体的验证通常需要早期产生同源全长免疫球蛋白G(IgG)。通过标准亚克隆将噬菌体文库输出物转化为完整免疫球蛋白既耗时,又限制了可评估的克隆数量。我们开发了一种新型系统,可将噬菌体展示载体中的单链抗体片段(scFv)直接转化为IgG,无需任何体外亚克隆步骤。这个名为pMINERVA的新载体系统巧妙地利用了在大肠杆菌中表达的位点特异性噬菌体整合酶以及在哺乳动物细胞内发生的内含子剪接。使用该系统,噬菌体展示载体包含支持抗体在大肠杆菌和哺乳动物细胞中表达的细菌和哺乳动物调控区域。单链可变片段(scFv)抗体作为与gpIII外壳蛋白的基因融合体在噬菌体M13表面表达。通过转导第二种大肠杆菌菌株,scFv可转化为能在哺乳动物细胞中表达的IgG。在该菌株中,phiC31重组酶将来自受体质粒的重链恒定结构域与重链可变结构域融合,并在轻链可变结构域上游引入控制元件。在哺乳动物细胞中的剪接去除了包含M13 gpIII基因的合成内含子,以产生轻链可变结构域与恒定结构域的融合体。我们表明,展示scFv的噬菌体以及使用该系统产生的重组IgG以野生型水平表达并保留正常功能。pMINERVA的使用完全消除了目前将scFv转化为功能性IgG抗体所需的劳动密集型亚克隆和DNA序列确认步骤。

相似文献

1
pMINERVA: A donor-acceptor system for the in vivo recombineering of scFv into IgG molecules.
J Immunol Methods. 2016 Apr;431:22-30. doi: 10.1016/j.jim.2016.02.003. Epub 2016 Feb 3.
2
A dual host vector for Fab phage display and expression of native IgG in mammalian cells.
Protein Eng Des Sel. 2013 Oct;26(10):655-62. doi: 10.1093/protein/gzt050. Epub 2013 Sep 24.
3
High-throughput reformatting of phage-displayed antibody fragments to IgGs by one-step emulsion PCR.
Protein Eng Des Sel. 2018 Nov 1;31(11):427-436. doi: 10.1093/protein/gzz004.
5
A mammalian expression system for high throughput antibody screening.
J Immunol Methods. 2013 Sep 30;395(1-2):45-53. doi: 10.1016/j.jim.2013.06.009. Epub 2013 Jul 4.
7
A Novel Dual Expression Platform for High Throughput Functional Screening of Phage Libraries in Product like Format.
PLoS One. 2015 Oct 15;10(10):e0140691. doi: 10.1371/journal.pone.0140691. eCollection 2015.
9
Construction of an scFv library by enzymatic assembly of V(L) and V(H) genes.
J Immunol Methods. 2013 Oct 31;396(1-2):15-22. doi: 10.1016/j.jim.2013.07.003. Epub 2013 Jul 31.

引用本文的文献

1
Evolution of phage display libraries for therapeutic antibody discovery.
MAbs. 2023 Jan-Dec;15(1):2213793. doi: 10.1080/19420862.2023.2213793.
2
Streamlining the Transition From Yeast Surface Display of Antibody Fragment Immune Libraries to the Production as IgG Format in Mammalian Cells.
Front Bioeng Biotechnol. 2022 May 10;10:794389. doi: 10.3389/fbioe.2022.794389. eCollection 2022.
3
Advances in the Production and Batch Reformatting of Phage Antibody Libraries.
Mol Biotechnol. 2019 Nov;61(11):801-815. doi: 10.1007/s12033-019-00207-0.
5
Current Challenges and Limitations in Antibody-Based Detection of Citrullinated Histones.
Front Immunol. 2016 Nov 25;7:528. doi: 10.3389/fimmu.2016.00528. eCollection 2016.

本文引用的文献

1
Platform for high-throughput antibody selection using synthetically-designed antibody libraries.
N Biotechnol. 2016 Sep 25;33(5 Pt A):565-73. doi: 10.1016/j.nbt.2015.11.005. Epub 2015 Nov 24.
2
Phage and Yeast Display.
Microbiol Spectr. 2015 Feb;3(1):AID-0028-2014. doi: 10.1128/microbiolspec.AID-0028-2014.
3
Affinity Purification of a Recombinant Protein Expressed as a Fusion with the Maltose-Binding Protein (MBP) Tag.
Methods Enzymol. 2015;559:17-26. doi: 10.1016/bs.mie.2014.11.004. Epub 2015 Apr 15.
4
Antibodies: validate recombinants once.
Nature. 2015 Apr 16;520(7547):295. doi: 10.1038/520295b.
6
A gateway-based system for fast evaluation of protein-protein interactions in bacteria.
PLoS One. 2015 Apr 9;10(4):e0123646. doi: 10.1371/journal.pone.0123646. eCollection 2015.
7
Reproducibility: Standardize antibodies used in research.
Nature. 2015 Feb 5;518(7537):27-9. doi: 10.1038/518027a.
9
HaloTag technology for specific and covalent labeling of fusion proteins.
Methods Mol Biol. 2015;1266:119-28. doi: 10.1007/978-1-4939-2272-7_8.
10
Recombinant renewable polyclonal antibodies.
MAbs. 2015;7(1):32-41. doi: 10.4161/19420862.2015.989047.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验