Stokes Jonathan M, French Shawn, Ovchinnikova Olga G, Bouwman Catrien, Whitfield Chris, Brown Eric D
Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8N 3Z5, Canada.
Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
Cell Chem Biol. 2016 Feb 18;23(2):267-277. doi: 10.1016/j.chembiol.2015.12.011. Epub 2016 Feb 4.
A poor understanding of the mechanisms by which antibiotics traverse the outer membrane remains a considerable obstacle to the development of novel Gram-negative antibiotics. Herein, we demonstrate that the Gram-negative bacterium Escherichia coli becomes susceptible to the narrow-spectrum antibiotic vancomycin during growth at low temperatures. Heterologous expression of an Enterococcus vanHBX vancomycin resistance cluster in E. coli confirmed that the mechanism of action was through inhibition of peptidoglycan biosynthesis. To understand the nature of vancomycin permeability, we screened for strains of E. coli that displayed resistance to vancomycin at low temperature. Surprisingly, we observed that mutations in outer membrane biosynthesis suppressed vancomycin activity. Subsequent chemical analysis of lipopolysaccharide from vancomycin-sensitive and -resistant strains confirmed that suppression was correlated with truncations in the core oligosaccharide of lipopolysaccharide. These unexpected observations challenge the current understanding of outer membrane permeability, and provide new chemical insights into the susceptibility of E. coli to glycopeptide antibiotics.
对抗生素穿过外膜机制的理解不足仍然是新型革兰氏阴性菌抗生素研发的重大障碍。在此,我们证明革兰氏阴性菌大肠杆菌在低温生长期间对窄谱抗生素万古霉素敏感。在大肠杆菌中异源表达肠球菌vanHBX万古霉素抗性簇证实其作用机制是通过抑制肽聚糖生物合成。为了解万古霉素通透性的本质,我们筛选了在低温下对万古霉素具有抗性的大肠杆菌菌株。令人惊讶的是,我们观察到外膜生物合成中的突变抑制了万古霉素活性。随后对万古霉素敏感和抗性菌株的脂多糖进行化学分析证实,抑制作用与脂多糖核心寡糖的截短有关。这些意外发现挑战了当前对外膜通透性的理解,并为大肠杆菌对糖肽抗生素的敏感性提供了新的化学见解。