Suppr超能文献

高强度聚焦超声作用下骨骼温度演变的建模

Modelling the temperature evolution of bone under high intensity focused ultrasound.

作者信息

ten Eikelder H M M, Bošnački D, Elevelt A, Donato K, Di Tullio A, Breuer B J T, van Wijk J H, van Dijk E V M, Modena D, Yeo S Y, Grüll H

机构信息

Eindhoven University of Technology, Eindhoven, The Netherlands.

出版信息

Phys Med Biol. 2016 Feb 21;61(4):1810-28. doi: 10.1088/0031-9155/61/4/1810. Epub 2016 Feb 8.

Abstract

Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR-HIFU treatments.

摘要

磁共振引导高强度聚焦超声(MR-HIFU)在临床上已被证明对患有骨转移的患者进行姑息性疼痛管理有效。其潜在机制被认为是通过超声加热皮质达到消融温度而导致骨膜去神经支配。挑战在于超声处理过程中的精确温度控制,因为目前尚无基于磁共振的骨组织温度测量方法。因此,与软组织的MR-HIFU消融不同,缺乏对HIFU的温度测量反馈,骨转移的治疗完全基于在骨表面相邻软组织中获取的温度信息。然而,相邻组织的加热取决于精确的超声处理方案,并且需要广泛的建模来估计皮质的实际温度。在此,我们开发了一种计算模型,以计算超声处理过程中骨和相邻组织的空间温度演变。首先,使用光线追踪技术计算每个空间点的产热,作为第二部分的源项,在第二部分中,通过求解Pennes生物热方程来计算实际温度作为空间和时间的函数。重要的是,我们的模型包括在骨界面产生的剪切波以及换能器和骨几何形状的所有几何考虑因素。该模型与基于远场近似的理论方法以及使用骨模型的MR-HIFU实验进行了比较。此外,我们研究了剪切波对骨中产热和由此产生的温度的贡献。我们模型预测出的温度演变与远场近似一致,并且与在模型中获得的实验数据吻合良好。我们的模型可以模拟患者骨转移的HIFU治疗,并且可以扩展为MR-HIFU治疗前的规划工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验