Slabbaert Jan R, Kuenen Sabine, Swerts Jef, Maes Ine, Uytterhoeven Valerie, Kasprowicz Jaroslaw, Fernandes Ana Clara, Blust Ronny, Verstreken Patrik
Center for the Biology of Disease, Flanders Institute for Biotechnology, 3000 Leuven, Belgium, Center for Human Genetics and Leuven Research Institute for Neurodegenerative Diseases, Catholic University of Leuven, 3000 Leuven, Belgium, and.
Department of Biology, Systemic Physiological and Ecotoxicological Research, University of Antwerp, 2020 Antwerp, Belgium.
J Neurosci. 2016 Feb 10;36(6):1914-29. doi: 10.1523/JNEUROSCI.3432-15.2016.
Mitochondria play an important role in the regulation of neurotransmission, and mitochondrial impairment is a key event in neurodegeneration. Cells rely on mitochondrial carrier proteins of the SLC25 family to shuttle ions, cofactors, and metabolites necessary for enzymatic reactions. Mutations in these carriers often result in rare but severe pathologies in the brain, and some of the genes, including SLC25A39 and SLC25A40, reside in susceptibility loci of severe forms of epilepsy. However, the role of most of these carriers has not been investigated in neurons in vivo. We identified shawn, the Drosophila homolog of SLC25A39 and SLC25A40, in a genetic screen to identify genes involved in neuronal function. Shawn localizes to mitochondria, and missense mutations result in an accumulation of reactive oxygen species, mitochondrial dysfunction, and neurodegeneration. Shawn regulates metal homeostasis, and we found in shawn mutants increased levels of manganese, calcium, and mitochondrial free iron. Mitochondrial mutants often cannot maintain synaptic transmission under demanding conditions, but shawn mutants do, and they also do not display endocytic defects. In contrast, shawn mutants harbor a significant increase in neurotransmitter release. Our work provides the first functional annotation of these essential mitochondrial carriers in the nervous system, and the results suggest that metal imbalances and mitochondrial dysfunction may contribute to defects in synaptic transmission and neuronal survival.
We describe for the first time the role of the mitochondrial carrier Shawn/SLC25A39/SLC25A40 in the nervous system. In humans, these genes reside in susceptibility loci for epilepsy, and, in flies, we observe neuronal defects related to mitochondrial dysfunction and metal homeostasis defects. Interestingly, shawn mutants also harbor increased neurotransmitter release and neurodegeneration. Our data suggest a connection between maintaining a correct metal balance and mitochondrial function to regulate neuronal survival and neurotransmitter release.
线粒体在神经传递调节中起重要作用,线粒体损伤是神经退行性变的关键事件。细胞依靠溶质载体家族25(SLC25)的线粒体载体蛋白来转运离子、辅助因子以及酶促反应所需的代谢物。这些载体中的突变通常会导致大脑中罕见但严重的病症,其中一些基因,包括SLC25A39和SLC25A40,位于严重癫痫形式的易感基因座中。然而,这些载体中的大多数在体内神经元中的作用尚未得到研究。我们在一项旨在鉴定参与神经元功能的基因的遗传筛选中,鉴定出了果蝇中SLC25A39和SLC25A40的同源物shawn。Shawn定位于线粒体,错义突变会导致活性氧积累、线粒体功能障碍和神经退行性变。Shawn调节金属稳态,我们发现在shawn突变体中锰、钙和线粒体游离铁的水平升高。线粒体突变体通常在苛刻条件下无法维持突触传递,但shawn突变体可以,并且它们也没有表现出内吞缺陷。相反,shawn突变体的神经递质释放显著增加。我们的工作首次对神经系统中这些必需的线粒体载体进行了功能注释,结果表明金属失衡和线粒体功能障碍可能导致突触传递和神经元存活缺陷。
我们首次描述了线粒体载体Shawn/SLC25A39/SLC25A40在神经系统中的作用。在人类中,这些基因位于癫痫的易感基因座中,在果蝇中,我们观察到与线粒体功能障碍和金属稳态缺陷相关的神经元缺陷。有趣的是,shawn突变体还存在神经递质释放增加和神经退行性变。我们的数据表明,维持正确的金属平衡与线粒体功能之间存在联系,以调节神经元存活和神经递质释放。