Donovan Katherine A, Zhu Shaolong, Liuni Peter, Peng Fen, Kessans Sarah A, Wilson Derek J, Dobson Renwick C J
From the Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand.
Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada.
J Biol Chem. 2016 Apr 22;291(17):9244-56. doi: 10.1074/jbc.M115.676270. Epub 2016 Feb 15.
Pyruvate kinase catalyzes the final step in glycolysis and is allosterically regulated to control flux through the pathway. Two models are proposed to explain how Escherichia coli pyruvate kinase type 1 is allosterically regulated: the "domain rotation model" suggests that both the domains within the monomer and the monomers within the tetramer reorient with respect to one another; the "rigid body reorientation model" proposes only a reorientation of the monomers within the tetramer causing rigidification of the active site. To test these hypotheses and elucidate the conformational and dynamic changes that drive allostery, we performed time-resolved electrospray ionization mass spectrometry coupled to hydrogen-deuterium exchange studies followed by mutagenic analysis to test the activation mechanism. Global exchange experiments, supported by thermostability studies, demonstrate that fructose 1,6-bisphosphate binding to the allosteric domain causes a shift toward a globally more dynamic ensemble of conformations. Mapping deuterium exchange to peptides within the enzyme highlight site-specific regions with altered conformational dynamics, many of which increase in conformational flexibility. Based upon these and mutagenic studies, we propose an allosteric mechanism whereby the binding of fructose 1,6-bisphosphate destabilizes an α-helix that bridges the allosteric and active site domains within the monomeric unit. This destabilizes the β-strands within the (β/α)8-barrel domain and the linked active site loops that are responsible for substrate binding. Our data are consistent with the domain rotation model but inconsistent with the rigid body reorientation model given the increased flexibility at the interdomain interface, and we can for the first time explain how fructose 1,6-bisphosphate affects the active site.
丙酮酸激酶催化糖酵解的最后一步,并受到变构调节以控制该途径的通量。提出了两种模型来解释大肠杆菌1型丙酮酸激酶是如何受到变构调节的:“结构域旋转模型”表明,单体中的两个结构域以及四聚体中的单体彼此之间会重新定向;“刚体重新定向模型”则提出,只有四聚体中的单体发生重新定向,导致活性位点僵化。为了验证这些假设并阐明驱动变构的构象和动态变化,我们进行了时间分辨电喷雾电离质谱联用氢-氘交换研究,随后进行诱变分析以测试激活机制。在热稳定性研究的支持下,全局交换实验表明,1,6-二磷酸果糖与变构结构域的结合导致向全局更动态的构象集合转变。将氘交换映射到酶内的肽段上,突出了构象动力学发生改变的位点特异性区域,其中许多区域的构象灵活性增加。基于这些研究和诱变研究,我们提出了一种变构机制,即1,6-二磷酸果糖的结合会使连接单体单元内变构结构域和活性位点结构域的α-螺旋不稳定。这会使(β/α)8桶状结构域内的β-链以及负责底物结合的相连活性位点环不稳定。鉴于结构域间界面处的灵活性增加,我们的数据与结构域旋转模型一致,而与刚体重新定向模型不一致,并且我们首次能够解释1,6-二磷酸果糖如何影响活性位点。