Suppr超能文献

丙酮酸激酶的构象动力学与变构效应

Conformational Dynamics and Allostery in Pyruvate Kinase.

作者信息

Donovan Katherine A, Zhu Shaolong, Liuni Peter, Peng Fen, Kessans Sarah A, Wilson Derek J, Dobson Renwick C J

机构信息

From the Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand.

Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada.

出版信息

J Biol Chem. 2016 Apr 22;291(17):9244-56. doi: 10.1074/jbc.M115.676270. Epub 2016 Feb 15.

Abstract

Pyruvate kinase catalyzes the final step in glycolysis and is allosterically regulated to control flux through the pathway. Two models are proposed to explain how Escherichia coli pyruvate kinase type 1 is allosterically regulated: the "domain rotation model" suggests that both the domains within the monomer and the monomers within the tetramer reorient with respect to one another; the "rigid body reorientation model" proposes only a reorientation of the monomers within the tetramer causing rigidification of the active site. To test these hypotheses and elucidate the conformational and dynamic changes that drive allostery, we performed time-resolved electrospray ionization mass spectrometry coupled to hydrogen-deuterium exchange studies followed by mutagenic analysis to test the activation mechanism. Global exchange experiments, supported by thermostability studies, demonstrate that fructose 1,6-bisphosphate binding to the allosteric domain causes a shift toward a globally more dynamic ensemble of conformations. Mapping deuterium exchange to peptides within the enzyme highlight site-specific regions with altered conformational dynamics, many of which increase in conformational flexibility. Based upon these and mutagenic studies, we propose an allosteric mechanism whereby the binding of fructose 1,6-bisphosphate destabilizes an α-helix that bridges the allosteric and active site domains within the monomeric unit. This destabilizes the β-strands within the (β/α)8-barrel domain and the linked active site loops that are responsible for substrate binding. Our data are consistent with the domain rotation model but inconsistent with the rigid body reorientation model given the increased flexibility at the interdomain interface, and we can for the first time explain how fructose 1,6-bisphosphate affects the active site.

摘要

丙酮酸激酶催化糖酵解的最后一步,并受到变构调节以控制该途径的通量。提出了两种模型来解释大肠杆菌1型丙酮酸激酶是如何受到变构调节的:“结构域旋转模型”表明,单体中的两个结构域以及四聚体中的单体彼此之间会重新定向;“刚体重新定向模型”则提出,只有四聚体中的单体发生重新定向,导致活性位点僵化。为了验证这些假设并阐明驱动变构的构象和动态变化,我们进行了时间分辨电喷雾电离质谱联用氢-氘交换研究,随后进行诱变分析以测试激活机制。在热稳定性研究的支持下,全局交换实验表明,1,6-二磷酸果糖与变构结构域的结合导致向全局更动态的构象集合转变。将氘交换映射到酶内的肽段上,突出了构象动力学发生改变的位点特异性区域,其中许多区域的构象灵活性增加。基于这些研究和诱变研究,我们提出了一种变构机制,即1,6-二磷酸果糖的结合会使连接单体单元内变构结构域和活性位点结构域的α-螺旋不稳定。这会使(β/α)8桶状结构域内的β-链以及负责底物结合的相连活性位点环不稳定。鉴于结构域间界面处的灵活性增加,我们的数据与结构域旋转模型一致,而与刚体重新定向模型不一致,并且我们首次能够解释1,6-二磷酸果糖如何影响活性位点。

相似文献

1
Conformational Dynamics and Allostery in Pyruvate Kinase.
J Biol Chem. 2016 Apr 22;291(17):9244-56. doi: 10.1074/jbc.M115.676270. Epub 2016 Feb 15.
2
3
Comparing the Conformational Stability of Pyruvate Kinase in the Gas Phase and in Solution.
J Am Soc Mass Spectrom. 2020 Mar 4;31(3):685-692. doi: 10.1021/jasms.9b00130. Epub 2020 Jan 17.
4
The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate.
Structure. 1998 Feb 15;6(2):195-210. doi: 10.1016/s0969-2126(98)00021-5.
5
The lid domain is important, but not essential, for catalysis of Escherichia coli pyruvate kinase.
Eur Biophys J. 2020 Dec;49(8):761-772. doi: 10.1007/s00249-020-01466-5. Epub 2020 Sep 25.
7
The putative effector-binding site of Leishmania mexicana pyruvate kinase studied by site-directed mutagenesis.
FEBS Lett. 2002 Mar 13;514(2-3):255-9. doi: 10.1016/s0014-5793(02)02374-8.
8
The allosteric regulation of pyruvate kinase.
J Biol Chem. 2000 Jun 16;275(24):18145-52. doi: 10.1074/jbc.M001870200.
10
Substrate-binding domain conformational dynamics mediate Hsp70 allostery.
Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):E2865-73. doi: 10.1073/pnas.1506692112. Epub 2015 May 18.

引用本文的文献

1
3
YiaC and CobB regulate lysine lactylation in Escherichia coli.
Nat Commun. 2022 Nov 4;13(1):6628. doi: 10.1038/s41467-022-34399-y.
4
5
Renoprotection of Microcystin-RR in Unilateral Ureteral Obstruction-Induced Renal Fibrosis: Targeting the PKM2-HIF-1α Pathway.
Front Pharmacol. 2022 Jun 9;13:830312. doi: 10.3389/fphar.2022.830312. eCollection 2022.
6
The lid domain is important, but not essential, for catalysis of Escherichia coli pyruvate kinase.
Eur Biophys J. 2020 Dec;49(8):761-772. doi: 10.1007/s00249-020-01466-5. Epub 2020 Sep 25.
8
H/D Exchange Characterization of Silent Coupling: Entropy-Enthalpy Compensation in Allostery.
Biophys J. 2020 Jun 16;118(12):2966-2978. doi: 10.1016/j.bpj.2020.05.012. Epub 2020 May 20.
9
An overview of structure, function, and regulation of pyruvate kinases.
Protein Sci. 2019 Oct;28(10):1771-1784. doi: 10.1002/pro.3691. Epub 2019 Aug 12.

本文引用的文献

1
Grappling with anisotropic data, pseudo-merohedral twinning and pseudo-translational noncrystallographic symmetry: a case study involving pyruvate kinase.
Acta Crystallogr D Struct Biol. 2016 Apr;72(Pt 4):512-9. doi: 10.1107/S205979831600142X. Epub 2016 Mar 24.
2
Structures of pyruvate kinases display evolutionarily divergent allosteric strategies.
R Soc Open Sci. 2014 Sep 24;1(1):140120. doi: 10.1098/rsos.140120. eCollection 2014 Sep.
4
New look at hemoglobin allostery.
Chem Rev. 2015 Feb 25;115(4):1702-24. doi: 10.1021/cr500495x. Epub 2015 Jan 21.
5
The energy landscape of adenylate kinase during catalysis.
Nat Struct Mol Biol. 2015 Feb;22(2):124-31. doi: 10.1038/nsmb.2941. Epub 2015 Jan 12.
6
Allostery without a conformational change? Revisiting the paradigm.
Curr Opin Struct Biol. 2015 Feb;30:17-24. doi: 10.1016/j.sbi.2014.11.005. Epub 2014 Dec 11.
8
The ensemble nature of allostery.
Nature. 2014 Apr 17;508(7496):331-9. doi: 10.1038/nature13001.
9
A unified view of "how allostery works".
PLoS Comput Biol. 2014 Feb 6;10(2):e1003394. doi: 10.1371/journal.pcbi.1003394. eCollection 2014 Feb.
10
Pyruvate kinases have an intrinsic and conserved decarboxylase activity.
Biochem J. 2014 Mar 1;458(2):301-11. doi: 10.1042/BJ20130790.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验