Pająk Beata, Kania Elżbieta, Orzechowski Arkadiusz
Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland; Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland.
Electron Microscopy Platform, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland.
Oxid Med Cell Longev. 2016;2016:1805304. doi: 10.1155/2016/1805304. Epub 2016 Jan 6.
This review is focused on the possible causes of mitochondrial dysfunction in AD, underlying molecular mechanisms of this malfunction, possible causes and known consequences of APP, Aβ, and hyperphosphorylated tau presence in mitochondria, and the contribution of altered lipid metabolism (nonsterol isoprenoids) to pathological processes leading to increased formation and accumulation of the aforementioned hallmarks of AD. Abnormal protein folding and unfolded protein response seem to be the outcomes of impaired glycosylation due to metabolic disturbances in geranylgeraniol intermediary metabolism. The origin and consecutive fate of APP, Aβ, and tau are emphasized on intracellular trafficking apparently influenced by inaccurate posttranslational modifications. We hypothesize that incorrect intracellular processing of APP determines protein translocation to mitochondria in AD. Similarly, without obvious reasons, the passage of Aβ and tau to mitochondria is observed. APP targeted to mitochondria blocks the activity of protein translocase complex resulting in poor import of proteins central to oxidative phosphorylation. Besides, APP, Aβ, and neurofibrillary tangles of tau directly or indirectly impair mitochondrial biochemistry and bioenergetics, with concomitant generation of oxidative/nitrosative stress. Limited protective mechanisms are inadequate to prevent the free radical-mediated lesions. Finally, neuronal loss is observed in AD-affected brains typically by pathologic apoptosis.
本综述聚焦于阿尔茨海默病(AD)中线粒体功能障碍的可能原因、这种功能异常的潜在分子机制、线粒体中淀粉样前体蛋白(APP)、β淀粉样蛋白(Aβ)和过度磷酸化tau蛋白存在的可能原因及已知后果,以及脂质代谢改变(非甾醇类异戊二烯)对导致AD上述标志性特征形成和积累增加的病理过程的作用。异常蛋白质折叠和未折叠蛋白反应似乎是由于香叶基香叶醇中间代谢的代谢紊乱导致糖基化受损的结果。APP、Aβ和tau蛋白的起源及后续命运在明显受不准确翻译后修饰影响的细胞内运输过程中得到强调。我们推测,APP在细胞内的错误加工决定了其在AD中转位至线粒体。同样,在没有明显原因的情况下,也观察到Aβ和tau蛋白进入线粒体。靶向线粒体的APP会阻断蛋白质转位酶复合物的活性,导致对氧化磷酸化至关重要的蛋白质导入不良。此外,APP、Aβ和tau蛋白的神经原纤维缠结直接或间接损害线粒体生物化学和生物能量学,并伴随氧化/亚硝化应激的产生。有限的保护机制不足以防止自由基介导的损伤。最后,在受AD影响的大脑中通常通过病理性凋亡观察到神经元丢失。