Suppr超能文献

广义格子的异常值检测方法:从方差分析到 REML 的转变案例研究。

Outlier detection methods for generalized lattices: a case study on the transition from ANOVA to REML.

机构信息

Biostatistics Unit, Institute of Crop Sciences, University of Hohenheim, Fruwirthstrasse 23, 70599, Stuttgart, Germany.

Plant Breeding Institute, University of Hohenheim, Fruwirthstrasse 21, 70599, Stuttgart, Germany.

出版信息

Theor Appl Genet. 2016 Apr;129(4):787-804. doi: 10.1007/s00122-016-2666-6. Epub 2016 Feb 16.

Abstract

We review and propose several methods for identifying possible outliers and evaluate their properties. The methods are applied to a genomic prediction program in hybrid rye. Many plant breeders use ANOVA-based software for routine analysis of field trials. These programs may offer specific in-built options for residual analysis that are lacking in current REML software. With the advance of molecular technologies, there is a need to switch to REML-based approaches, but without losing the good features of outlier detection methods that have proven useful in the past. Our aims were to compare the variance component estimates between ANOVA and REML approaches, to scrutinize the outlier detection method of the ANOVA-based package PlabStat and to propose and evaluate alternative procedures for outlier detection. We compared the outputs produced using ANOVA and REML approaches of four published datasets of generalized lattice designs. Five outlier detection methods are explained step by step. Their performance was evaluated by measuring the true positive rate and the false positive rate in a dataset with artificial outliers simulated in several scenarios. An implementation of genomic prediction using an empirical rye multi-environment trial was used to assess the outlier detection methods with respect to the predictive abilities of a mixed model for each method. We provide a detailed explanation of how the PlabStat outlier detection methodology can be translated to REML-based software together with the evaluation of alternative methods to identify outliers. The method combining the Bonferroni-Holm test to judge each residual and the residual standardization strategy of PlabStat exhibited good ability to detect outliers in small and large datasets and under a genomic prediction application. We recommend the use of outlier detection methods as a decision support in the routine data analyses of plant breeding experiments.

摘要

我们回顾并提出了几种识别可能异常值的方法,并评估了它们的性质。这些方法应用于杂种黑麦的基因组预测程序。许多植物育种家使用基于 ANOVA 的软件进行田间试验的常规分析。这些程序可能提供特定的内置残差分析选项,而当前的 REML 软件则缺乏这些选项。随着分子技术的进步,需要转向基于 REML 的方法,但又不能失去过去证明有用的异常值检测方法的良好特性。我们的目的是比较 ANOVA 和 REML 方法的方差分量估计,仔细研究基于 ANOVA 的 PlabStat 软件包的异常值检测方法,并提出和评估替代的异常值检测程序。我们比较了四个广义格子设计发表数据集的 ANOVA 和 REML 方法的输出。逐步解释了五种异常值检测方法。通过在几种情况下模拟人工异常值来测量数据集的真实阳性率和假阳性率,评估它们的性能。使用经验证的黑麦多环境试验进行基因组预测的实现,评估每种方法的混合模型预测能力的异常值检测方法。我们提供了如何将 PlabStat 异常值检测方法从基于 ANOVA 的软件转换到基于 REML 的软件的详细解释,以及识别异常值的替代方法的评估。结合用于判断每个残差的 Bonferroni-Holm 检验和 PlabStat 的残差标准化策略的方法,在小数据集和大数据集以及基因组预测应用中,均具有良好的检测异常值的能力。我们建议在植物育种实验的常规数据分析中使用异常值检测方法作为决策支持。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验