CSIRO Land and Water, GPO Box 1666, Canberra ACT 2601, Australia.
Sci Total Environ. 2016 Oct 15;568:587-593. doi: 10.1016/j.scitotenv.2016.01.202. Epub 2016 Feb 13.
This paper uses examples from Australia to argue for a new approach to integrative research in the Earth's near surface environment where the pedosphere, atmosphere, hydrosphere, and biosphere interact, the so-called 'Critical Zone'. In Australia, for around 25years, environmental data layers presented through Geographical Information Systems software have been combined with field-based measurements and observations to produce spatially explicit predictive models for digitally mapping soils and soil properties. The availability of spatially extensive datasets representing different factors of landscape evolution and their exploration with machine learning and rule induction techniques also allow the evaluation of emergent patterns against existing domain knowledge, which in turn can lead to new insights and can facilitate their extrapolation over large areas. Thus the data-driven approach is complementary to the hypothesis-driven scientific inquiry in Critical Zone observatories.
本文以澳大利亚为例,提出了一种新的方法,用于研究地球近地表环境中的综合研究,在这个环境中,土壤圈、大气圈、水圈和生物圈相互作用,也就是所谓的“关键带”。在澳大利亚,大约 25 年来,通过地理信息系统软件呈现的环境数据层已经与基于现场的测量和观测相结合,以生成用于数字绘制土壤和土壤特性的空间明确的预测模型。具有空间扩展性的数据集的可用性代表了景观演化的不同因素,通过机器学习和规则归纳技术对其进行探索,也可以根据现有领域知识评估新兴模式,这反过来又可以带来新的见解,并有助于在大面积范围内进行推断。因此,数据驱动的方法是对关键带观测站的假设驱动科学研究的补充。