Suppr超能文献

纳米尺度下一维巴基球系统中的孤立波

Solitary Wave in One-dimensional Buckyball System at Nanoscale.

作者信息

Xu Jun, Zheng Bowen, Liu Yilun

机构信息

Department of Automotive Engineering, School of Transportation Science and Engineering, Beihang University, Beijing, China, 100191.

Advanced Vehicle Research Center, Beihang University, Beijing, China, 100191.

出版信息

Sci Rep. 2016 Feb 19;6:21052. doi: 10.1038/srep21052.

Abstract

We have studied the stress wave propagation in one-dimensional (1-D) nanoscopic buckyball (C60) system by molecular dynamics (MD) simulation and quantitative modeling. Simulation results have shown that solitary waves are generated and propagating in the buckyball system through impacting one buckyball at one end of the buckyball chain. We have found the solitary wave behaviors are closely dependent on the initial temperature and impacting speed of the buckyball chain. There are almost no dispersion and dissipation of the solitary waves (stationary solitary wave) for relatively low temperature and high impacting speed. While for relatively high temperature and low impacting speed the profile of the solitary waves is highly distorted and dissipated after propagating several tens of buckyballs. A phase diagram is proposed to describe the effect of the temperature and impacting speed on the solitary wave behaviors in buckyball system. In order to quantitatively describe the wave behavior in buckyball system, a simple nonlinear-spring model is established, which can describe the MD simulation results at low temperature very well. The results presented in this work may lay a solid step towards the further understanding and manipulation of stress wave propagation and impact energy mitigation at nanoscale.

摘要

我们通过分子动力学(MD)模拟和定量建模研究了一维(1-D)纳米巴基球(C60)系统中的应力波传播。模拟结果表明,通过冲击巴基球链一端的一个巴基球,孤波在巴基球系统中产生并传播。我们发现孤波行为密切依赖于巴基球链的初始温度和冲击速度。对于相对较低的温度和较高的冲击速度,孤波几乎没有色散和耗散(驻孤波)。而对于相对较高的温度和较低的冲击速度,孤波在传播几十个巴基球后,其波形会高度扭曲并耗散。提出了一个相图来描述温度和冲击速度对巴基球系统中孤波行为的影响。为了定量描述巴基球系统中的波行为,建立了一个简单的非线性弹簧模型,该模型能很好地描述低温下的MD模拟结果。这项工作中呈现的结果可能为进一步理解和操控纳米尺度下的应力波传播及冲击能量缓解奠定坚实的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d722/4759554/8f209eaa8696/srep21052-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验