Suppr超能文献

二维玻色-爱因斯坦凝聚体中慢光极化激元的可调极化子

Tunable Polarons of Slow-Light Polaritons in a Two-Dimensional Bose-Einstein Condensate.

作者信息

Grusdt Fabian, Fleischhauer Michael

机构信息

Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, Germany.

Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, 67663 Kaiserslautern, Germany.

出版信息

Phys Rev Lett. 2016 Feb 5;116(5):053602. doi: 10.1103/PhysRevLett.116.053602. Epub 2016 Feb 2.

Abstract

When an impurity interacts with a bath of phonons it forms a polaron. For increasing interaction strengths the mass of the polaron increases and it can become self-trapped. For impurity atoms inside an atomic Bose-Einstein condensate (BEC) the nature of this transition is not understood. While Feynman's variational approach to the Fröhlich model predicts a sharp transition for light impurities, renormalization group studies always predict an extended intermediate-coupling region characterized by large phonon correlations. To investigate this intricate regime and to test polaron physics beyond the validity of the Fröhlich model we suggest a versatile experimental setup that allows us to tune both the mass of the impurity and its interactions with the BEC. The impurity is realized as a dark-state polariton (DSP) inside a quasi-two-dimensional BEC. We show that its interactions with the Bogoliubov phonons lead to photonic polarons, described by the Bogoliubov-Fröhlich Hamiltonian, and make theoretical predictions using an extension of a recently introduced renormalization group approach to Fröhlich polarons.

摘要

当一种杂质与声子浴相互作用时,它会形成一个极化子。随着相互作用强度的增加,极化子的质量会增加,并且它可能会发生自陷。对于原子玻色 - 爱因斯坦凝聚体(BEC)内部的杂质原子,这种转变的本质尚不清楚。虽然费曼对弗罗利希模型的变分方法预测轻杂质会有一个尖锐的转变,但重整化群研究总是预测存在一个以大声子相关性为特征的扩展中间耦合区域。为了研究这个复杂的区域并在弗罗利希模型的有效性之外测试极化子物理,我们提出了一种通用的实验装置,它使我们能够调节杂质的质量及其与BEC的相互作用。杂质在准二维BEC中被实现为暗态极化激元(DSP)。我们表明,它与博戈留波夫声子的相互作用会导致光子极化子,由博戈留波夫 - 弗罗利希哈密顿量描述,并使用最近引入的针对弗罗利希极化子的重整化群方法的扩展进行理论预测。

相似文献

1
Tunable Polarons of Slow-Light Polaritons in a Two-Dimensional Bose-Einstein Condensate.
Phys Rev Lett. 2016 Feb 5;116(5):053602. doi: 10.1103/PhysRevLett.116.053602. Epub 2016 Feb 2.
3
Dynamical Variational Approach to Bose Polarons at Finite Temperatures.
Phys Rev Lett. 2020 Jun 5;124(22):223401. doi: 10.1103/PhysRevLett.124.223401.
4
Impurity in a Bose-Einstein Condensate and the Efimov Effect.
Phys Rev Lett. 2015 Sep 18;115(12):125302. doi: 10.1103/PhysRevLett.115.125302.
5
Breathing modes of repulsive polarons in Bose-Bose mixtures.
J Phys Condens Matter. 2020 Jul 16;32(41). doi: 10.1088/1361-648X/ab997a.
6
Tunable Polarons in Bose-Einstein Condensates.
Sci Rep. 2017 May 24;7(1):2355. doi: 10.1038/s41598-017-02398-5.
7
Observation of Attractive and Repulsive Polarons in a Bose-Einstein Condensate.
Phys Rev Lett. 2016 Jul 29;117(5):055302. doi: 10.1103/PhysRevLett.117.055302. Epub 2016 Jul 28.
8
Creation of Rydberg Polarons in a Bose Gas.
Phys Rev Lett. 2018 Feb 23;120(8):083401. doi: 10.1103/PhysRevLett.120.083401.
9
Chemistry of a Light Impurity in a Bose-Einstein Condensate.
Phys Rev Lett. 2022 May 6;128(18):183401. doi: 10.1103/PhysRevLett.128.183401.
10
Roton-Induced Bose Polaron in the Presence of Synthetic Spin-Orbit Coupling.
Phys Rev Lett. 2019 Nov 22;123(21):213401. doi: 10.1103/PhysRevLett.123.213401.

引用本文的文献

1
Single-impurity-induced Dicke quantum phase transition in a cavity-Bose-Einstein condensate.
Sci Rep. 2017 Aug 7;7(1):7404. doi: 10.1038/s41598-017-07899-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验