Suppr超能文献

超薄外延Fe3O4 / MgO(0 0 1)薄膜的结构相图:厚度和氧压依赖性

Structural phase diagram for ultra-thin epitaxial Fe3O4 / MgO(0 0 1) films: thickness and oxygen pressure dependence.

作者信息

Alraddadi S, Hines W, Yilmaz T, Gu G D, Sinkovic B

机构信息

Department of Physics, University of Connecticut, Storrs, CT 06269, USA.

出版信息

J Phys Condens Matter. 2016 Mar 23;28(11):115402. doi: 10.1088/0953-8984/28/11/115402. Epub 2016 Feb 19.

Abstract

A systematic investigation of the thickness and oxygen pressure dependence for the structural properties of ultra-thin epitaxial magnetite (Fe3O4) films has been carried out; for such films, the structural properties generally differ from those for the bulk when the thickness  ⩽10 nm. Iron oxide ultra-thin films with thicknesses varying from 3 nm to 20 nm were grown on MgO (0 0 1) substrates using molecular beam epitaxy under different oxygen pressures ranging from 1  ×  10(-7) torr to 1  ×  10(-5) torr. The crystallographic and electronic structures of the films were characterized using low energy electron diffraction (LEED) and x-ray photoemission spectroscopy (XPS), respectively. The quality of the epitaxial Fe3O4 ultra-thin films was judged by magnetic measurements of the Verwey transition, along with complementary XPS spectra. It was observed that under the same growth conditions the stoichiometry of ultra-thin films under 10 nm transforms from the Fe3O4 phase to the FeO phase. In this work, a phase diagram based on thickness and oxygen pressure has been constructed to explain the structural phase transformation. It was found that high-quality magnetite films with thicknesses  ⩽20 nm formed within a narrow range of oxygen pressure. An optimal and controlled growth process is a crucial requirement for the accurate study of the magnetic and electronic properties for ultra-thin Fe3O4 films. Furthermore, these results are significant because they may indicate a general trend in the growth of other oxide films, which has not been previously observed or considered.

摘要

已对超薄外延磁铁矿(Fe3O4)薄膜的结构特性与厚度及氧压的相关性进行了系统研究;对于此类薄膜,当厚度≤10 nm时,其结构特性通常与体材料不同。使用分子束外延技术,在MgO(0 0 1)衬底上,于1×10(-7) 托至1×10(-5) 托的不同氧压下,生长了厚度在3 nm至20 nm之间变化的氧化铁超薄薄膜。分别使用低能电子衍射(LEED)和X射线光电子能谱(XPS)对薄膜的晶体结构和电子结构进行了表征。通过对Verwey转变的磁性测量以及互补的XPS光谱,判断外延Fe3O4超薄薄膜的质量。观察到在相同的生长条件下,厚度小于10 nm的超薄薄膜的化学计量比从Fe3O4相转变为FeO相。在这项工作中,构建了基于厚度和氧压的相图来解释结构相变。发现厚度≤20 nm的高质量磁铁矿薄膜在狭窄的氧压范围内形成。对于准确研究超薄Fe3O4薄膜的磁性和电子特性而言,优化且可控的生长过程是一项关键要求。此外,这些结果意义重大,因为它们可能表明了其他氧化物薄膜生长中的一种普遍趋势,而这在之前并未被观察到或考虑到。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验