Flores-Chaparro Carlos E, Ruiz Luis Felipe Chazaro, Alfaro-De la Torre Ma Catalina, Rangel-Mendez Jose Rene
División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Col. Lomas 4a sección, C.P. 78216, San Luis Potosí, SLP, Mexico.
Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, Centro Histórico, C.P. 78000, San Luis Potosí, SLP, Mexico.
Environ Sci Pollut Res Int. 2016 Jun;23(11):11014-11024. doi: 10.1007/s11356-016-6286-0. Epub 2016 Feb 23.
Nowadays, petrochemical operations involve risks to the environment and one of the biggest is oil spills. Low molecular aromatics like benzene, toluene, and naphthalene dissolve in water, and because of their toxicological characteristics, these produce severe consequences to the environment. The oil spill cleanup strategies are mainly designed to deal with the heavy fractions accumulated on the water surface. Unfortunately, very limited information is available regarding the treatment of dissolved fractions.A commercial (Filtrasorb 400) and modified activated carbons were evaluated to remove benzene, toluene, and naphthalene from water, which are the most soluble aromatic hydrocarbons, at different ionic strengths (I) and temperatures (0-0.76 M and 4-25 °C, respectively). This allowed simulating the conditions of fresh and saline waters when assessing the performance of these adsorbents. It was found that the hydrocarbons adsorption affinity increased 12 % at a I of 0.5 M, due to the less negative charge of the adsorbent, while at a high I (≃0.76 M) in a synthetic seawater, the adsorption capacity decreased 21 % that was attributed to the adsorbent's pores occlusion by water clusters. Approximately, 40 h were needed to reach equilibrium; however, the maximum adsorption rate occurred within the first hour in all the cases. Moreover, the hydrocarbons adsorption and desorption capacities increased when the temperature augmented from 4 to 25 °C. On the other hand, thermally and chemically modified materials showed that the interactions between adsorbent-contaminant increased with the basification degree of the adsorbent surface.
如今,石化作业对环境存在风险,其中最大的风险之一就是石油泄漏。像苯、甲苯和萘这样的低分子芳烃可溶于水,并且由于它们的毒理学特性,会对环境造成严重后果。石油泄漏清理策略主要旨在处理积聚在水面上的重质馏分。不幸的是,关于溶解馏分处理的可用信息非常有限。对一种商用(Filtrasorb 400)活性炭和改性活性炭进行了评估,以在不同离子强度(I)和温度(分别为0 - 0.76 M和4 - 25°C)下去除水中的苯、甲苯和萘,这几种是最易溶的芳烃。这使得在评估这些吸附剂性能时能够模拟淡水和咸水的条件。研究发现,当离子强度为0.5 M时,烃类的吸附亲和力增加了12%,这是由于吸附剂的负电荷减少;而在合成海水中高离子强度(约0.76 M)时,吸附容量下降了21%,这归因于水簇对吸附剂孔隙的堵塞。达到平衡大约需要40小时;然而,在所有情况下,最大吸附速率都出现在第一个小时内。此外,当温度从4°C升高到25°C时,烃类的吸附和解吸容量增加。另一方面,热改性和化学改性材料表明,吸附剂与污染物之间的相互作用随着吸附剂表面碱化程度的增加而增强。