Hernández Agustín, Herrera-Palau Rosana, Madroñal Juan M, Albi Tomás, López-Lluch Guillermo, Perez-Castiñeira José R, Navas Plácido, Valverde Federico, Serrano Aurelio
Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de SevillaSevilla, Spain; Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São PauloSão Paulo, Brazil.
Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla Sevilla, Spain.
Front Plant Sci. 2016 Feb 9;7:85. doi: 10.3389/fpls.2016.00085. eCollection 2016.
Amine fungicides are widely used as crop protectants. Their success is believed to be related to their ability to inhibit postlanosterol sterol biosynthesis in fungi, in particular sterol-Δ(8),Δ(7)-isomerases and sterol-Δ(14)-reductases, with a concomitant accumulation of toxic abnormal sterols. However, their actual cellular effects and mechanisms of death induction are still poorly understood. Paradoxically, plants exhibit a natural resistance to amine fungicides although they have similar enzymes in postcicloartenol sterol biosynthesis that are also susceptible to fungicide inhibition. A major difference in vacuolar ion homeostasis between plants and fungi is the presence of a dual set of primary proton pumps in the former (V-ATPase and H(+)-pyrophosphatase), but only the V-ATPase in the latter. Abnormal sterols affect the proton-pumping capacity of V-ATPases in fungi and this has been proposed as a major determinant in fungicide action. Using Saccharomyces cerevisiae as a model fungus, we provide evidence that amine fungicide treatment induced cell death by apoptosis. Cell death was concomitant with impaired H(+)-pumping capacity in vacuole vesicles and dependent on vacuolar proteases. Also, the heterologous expression of the Arabidopsis thaliana main H(+)-pyrophosphatase (AVP1) at the fungal vacuolar membrane reduced apoptosis levels in yeast and increased resistance to amine fungicides. Consistently, A. thaliana avp1 mutant seedlings showed increased susceptibility to this amine fungicide, particularly at the level of root development. This is in agreement with AVP1 being nearly the sole H(+)-pyrophosphatase gene expressed at the root elongation zones. All in all, the present data suggest that H(+)-pyrophosphatases are major determinants of plant tolerance to amine fungicides.
胺类杀菌剂被广泛用作作物保护剂。人们认为它们的成功与其抑制真菌中羊毛甾醇后甾醇生物合成的能力有关,特别是甾醇-Δ(8),Δ(7)-异构酶和甾醇-Δ(14)-还原酶,同时伴有有毒异常甾醇的积累。然而,它们实际的细胞效应和诱导死亡的机制仍知之甚少。矛盾的是,植物对胺类杀菌剂表现出天然抗性,尽管它们在环阿屯醇后甾醇生物合成中具有类似的酶,这些酶也易受杀菌剂抑制。植物和真菌在液泡离子稳态方面的一个主要差异是前者存在一组双重的初级质子泵(V-ATP酶和H(+)-焦磷酸酶),而后者只有V-ATP酶。异常甾醇会影响真菌中V-ATP酶的质子泵能力,这被认为是杀菌剂作用的一个主要决定因素。我们以酿酒酵母作为模式真菌,提供证据表明胺类杀菌剂处理通过凋亡诱导细胞死亡。细胞死亡与液泡囊泡中H(+)泵能力受损同时发生,并且依赖于液泡蛋白酶。此外,拟南芥主要H(+)-焦磷酸酶(AVP1)在真菌液泡膜上的异源表达降低了酵母中的凋亡水平,并增加了对胺类杀菌剂的抗性。一致地,拟南芥avp1突变体幼苗对这种胺类杀菌剂的敏感性增加,特别是在根系发育水平上。这与AVP1几乎是在根伸长区表达的唯一H(+)-焦磷酸酶基因相符。总而言之,目前的数据表明H(+)-焦磷酸酶是植物对胺类杀菌剂耐受性的主要决定因素。