Gao Weiqing, Cheng Tonglei, Xue Xiaojie, Liu Lai, Zhang Lei, Liao Meisong, Suzuki Takenobu, Ohishi Yasutake
Opt Express. 2016 Feb 22;24(4):3278-93. doi: 10.1364/OE.24.003278.
The effects of stimulated Raman scattering (SRS) is demonstrated in chalcogenide microstructured optical fiber (MOF) with all-solid AsSe2 core and As2S5 cladding. The first-order Raman Stokes wave is investigated in the MOFs with different core diameters pumped by the picosecond pulses at 1958 nm. The maximum conversion efficiency of -15.0 dB from the pump to first-order Raman Stokes wave is obtained in the MOF with the core diameter of 2.6 μm. The conversion efficiency decreases when the core diameter deviates from 2.6 μm. When the fiber core is larger, the effective nonlinearity is decreased. When the fiber core is smaller, the mode field is difficult to be confined in the core. The walk-off length between the pump and Stokes wave is crucial to the process of SRS according to the analysis of the experimental data. The Raman effects are simulated numerically. The simulated results can agree well with the experiments. It is the first time to demonstrate the Raman effect in AsSe2-As2S5 MOF, to the best of our knowledge.