Department of Earth and Environmental Engineering, Columbia University, 905E Mudd, 500 West 120th Street, New York, NY, 10027, USA.
School of Sustainable Engineering & Built Environment, Arizona State University, Tempe, AZ, 85287-9309, USA.
Angew Chem Int Ed Engl. 2016 Mar 14;55(12):4026-9. doi: 10.1002/anie.201507846. Epub 2016 Feb 23.
Water confined in nanoscopic pores is essential in determining the energetics of many physical and chemical systems. Herein, we report a recently discovered unconventional, reversible chemical reaction driven by water quantities in nanopores. The reduction of the number of water molecules present in the pore space promotes the hydrolysis of CO3(2-) to HCO3(-) and OH(-). This phenomenon led to a nano-structured CO2 sorbent that binds CO2 spontaneously in ambient air when the surrounding is dry, while releasing it when exposed to moisture. The underlying mechanism is elucidated theoretically by computational modeling and verified by experiments. The free energy of CO3 (2-) hydrolysis in nanopores reduces with a decrease of water availability. This promotes the formation of OH(-), which has a high affinity to CO2 . The effect is not limited to carbonate/bicarbonate, but is extendable to a series of ions. Humidity-driven sorption opens a new approach to gas separation technology.
水在纳米孔中的受限状态对于许多物理和化学系统的能量学至关重要。在此,我们报告了一种最近发现的由纳米孔中水量驱动的非常规、可逆化学反应。减少孔空间中水分子的数量会促进 CO3(2-)的水解生成 HCO3(-)和 OH(-)。这一现象导致了一种纳米结构的 CO2 吸附剂,当周围环境干燥时,它会在环境空气中自发地吸附 CO2,而当暴露于湿气时,它会释放 CO2。这一机制通过计算建模得到了理论上的阐明,并通过实验得到了验证。纳米孔中 CO3(2-)水解的自由能随水供应的减少而降低。这促进了 OH(-)的形成,OH(-)对 CO2 具有高亲和力。这种效应不仅限于碳酸盐/碳酸氢盐,而是可以扩展到一系列离子。湿度驱动的吸附为气体分离技术开辟了新途径。