Suppr超能文献

用带反射的随机微分方程对生化反应系统进行建模。

Modelling biochemical reaction systems by stochastic differential equations with reflection.

作者信息

Niu Yuanling, Burrage Kevin, Chen Luonan

机构信息

School of Mathematics and Statistics, Central South University, Changsha 410083, China; Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, China.

Department of Computer Science, Oxford University, Wolfson Building, Parks Road, Oxford OX1 3QD, UK; School of Mathematical Sciences, Queensland University of Technology, Brisbane QLD 4001, Australia.

出版信息

J Theor Biol. 2016 May 7;396:90-104. doi: 10.1016/j.jtbi.2016.02.010. Epub 2016 Feb 23.

Abstract

In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach.

摘要

在本文中,我们给出了一个通过随机微分方程对生化反应系统进行建模和模拟的新框架,该方程带有反射项,并非以启发式的方式,而是以数学方式进行。与离散状态马尔可夫链方法相比,该模型在计算上更为高效,并且它确保解析解和数值解都保持在生物学上合理的区域内。具体而言,与先前的模型不同,我们的模型在数学上确保物种数量位于区域D中,这是生化反应的一个物理约束。区域D实际上是根据相应化学朗之万方程的结构得到的,即边界是生化反应系统所固有的。采用了一种投影方法的变体来求解带反射的随机微分方程模型,它包括三个简单步骤,即首先将欧拉-丸山方法应用于方程,然后检查该点是否位于区域D内,如果不在则进行正交投影。结果发现,在闭包(\overline{D})上的投影是一个凸二次规划问题的解。因此,可将现有的凸二次规划问题的方法用于正交投影映射。对生物系统中几个重要问题的数值测试证实了该方法的效率和准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验