Suppr超能文献

桦木酸通过改变水貂肺上皮细胞中转化生长因子-β(TGF-β)受体在脂筏/小窝和非小窝膜微区之间的分配来增强TGF-β信号传导。

Betulinic acid enhances TGF-β signaling by altering TGF-β receptors partitioning between lipid-raft/caveolae and non-caveolae membrane microdomains in mink lung epithelial cells.

作者信息

Chen C L, Chen C Y, Chen Y P, Huang Y B, Lin M W, Wu D C, Huang H T, Liu M Y, Chang H W, Kao Y C, Yang P H

机构信息

Department of Biological Science, National Sun Yat-sen University, Kaohsiung, 804, Taiwan, ROC.

Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, 804, Taiwan, ROC.

出版信息

J Biomed Sci. 2016 Feb 27;23:30. doi: 10.1186/s12929-016-0229-4.

Abstract

BACKGROUND

TGF-β is a key modulator in the regulation of cell proliferation and migration, and is also involved in the process of cancer development and progression. Previous studies have indicated that TGF-β responsiveness is determined by TGF-β receptor partitioning between lipid raft/caveolae-mediated and clathrin-mediated endocytosis. Lipid raft/caveolae-mediated endocytosis facilitates TGF-β degradation and thus suppressing TGF-β responsiveness. By contrast, clathrin-mediated endocytosis results in Smad2/3-dependent endosomal signaling, thereby promoting TGF-β responsiveness. Because betulinic acid shares a similar chemical structure with cholesterol and has been reported to insert into the plasma membrane, we speculate that betulinic acid changes the fluidity of the plasma membrane and modulates the signaling pathway associated with membrane microdomains. We propose that betulinic acid modulates TGF-β responsiveness by changing the partitioning of TGF-β receptor between lipid-raft/caveolae and non-caveolae microdomain on plasma membrane.

METHODS

We employed sucrose-density gradient ultracentrifugation and confocal microscopy to determine membrane localization of TGF-β receptors and used a luciferase assay to examine the effects of betulinic acid in TGF-β-stimulated promoter activation. In addition, we perform western blotting to test TGF-β-induced Smad2 phosphorylation and fibronectin production.

RESULTS AND CONCLUSIONS

Betulinic acid induces translocation of TGF-β receptors from lipid raft/caveolae to non-caveolae microdomains without changing total level of TGF-β receptors. The betulinic acid-induced TGF-β receptors translocation is rapid and correlate with the TGF-β-induced PAI-1 reporter gene activation and growth inhibition in Mv1Lu cells.

摘要

背景

转化生长因子-β(TGF-β)是细胞增殖和迁移调控中的关键调节因子,也参与癌症的发生和发展过程。先前的研究表明,TGF-β反应性由TGF-β受体在脂筏/小窝介导的内吞作用和网格蛋白介导的内吞作用之间的分配决定。脂筏/小窝介导的内吞作用促进TGF-β降解,从而抑制TGF-β反应性。相比之下,网格蛋白介导的内吞作用导致Smad2/3依赖的内体信号传导,从而促进TGF-β反应性。由于桦木酸与胆固醇具有相似的化学结构,并且已报道其可插入质膜,我们推测桦木酸会改变质膜的流动性并调节与膜微区相关的信号通路。我们提出桦木酸通过改变TGF-β受体在质膜上脂筏/小窝和非小窝微区之间的分配来调节TGF-β反应性。

方法

我们采用蔗糖密度梯度超速离心和共聚焦显微镜来确定TGF-β受体的膜定位,并使用荧光素酶测定法来检测桦木酸对TGF-β刺激的启动子激活的影响。此外,我们进行蛋白质免疫印迹来检测TGF-β诱导的Smad2磷酸化和纤连蛋白的产生。

结果与结论

桦木酸诱导TGF-β受体从脂筏/小窝转运至非小窝微区,而不改变TGF-β受体的总水平。桦木酸诱导的TGF-β受体转运迅速,并且与TGF-β诱导的Mv1Lu细胞中PAI-1报告基因激活和生长抑制相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ec1/4769553/ada2e7478eb7/12929_2016_229_Fig1_HTML.jpg

相似文献

3
Cholest-4-en-3-one attenuates TGF-β responsiveness by inducing TGF-β receptors degradation in Mv1Lu cells and colorectal adenocarcinoma cells.
J Recept Signal Transduct Res. 2017 Apr;37(2):189-199. doi: 10.1080/10799893.2016.1203944. Epub 2016 Jul 12.
4
Cholesterol suppresses cellular TGF-beta responsiveness: implications in atherogenesis.
J Cell Sci. 2007 Oct 15;120(Pt 20):3509-21. doi: 10.1242/jcs.006916. Epub 2007 Sep 18.
6
DMSO Enhances TGF-β Activity by Recruiting the Type II TGF-β Receptor From Intracellular Vesicles to the Plasma Membrane.
J Cell Biochem. 2016 Jul;117(7):1568-79. doi: 10.1002/jcb.25448. Epub 2016 Feb 18.
7
Cellular heparan sulfate negatively modulates transforming growth factor-beta1 (TGF-beta1) responsiveness in epithelial cells.
J Biol Chem. 2006 Apr 28;281(17):11506-14. doi: 10.1074/jbc.M512821200. Epub 2006 Feb 21.

引用本文的文献

本文引用的文献

1
Anti-cancer effects of ursane triterpenoid as a single agent and in combination with cisplatin in bladder cancer.
Eur J Pharmacol. 2014 Oct 5;740:742-51. doi: 10.1016/j.ejphar.2014.05.051. Epub 2014 Jun 14.
6
The triterpenoid CDDO-Me inhibits bleomycin-induced lung inflammation and fibrosis.
PLoS One. 2013 May 31;8(5):e63798. doi: 10.1371/journal.pone.0063798. Print 2013.
7
A synthetic PPAR-γ agonist triterpenoid ameliorates experimental fibrosis: PPAR-γ-independent suppression of fibrotic responses.
Ann Rheum Dis. 2014 Feb;73(2):446-54. doi: 10.1136/annrheumdis-2012-202716. Epub 2013 Mar 20.
8
Production of triterpenoid anti-cancer compound taraxerol in Agrobacterium-transformed root cultures of butterfly pea (Clitoria ternatea L.).
Appl Biochem Biotechnol. 2012 Oct;168(3):487-503. doi: 10.1007/s12010-012-9791-8. Epub 2012 Jul 28.
9
Phosphorylated filamin A regulates actin-linked caveolae dynamics.
J Cell Sci. 2011 Aug 15;124(Pt 16):2763-76. doi: 10.1242/jcs.080804.
10
TGF-β regulates isoform switching of FGF receptors and epithelial-mesenchymal transition.
EMBO J. 2011 Feb 16;30(4):783-95. doi: 10.1038/emboj.2010.351. Epub 2011 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验