Kerckhofs G, Chai Y C, Luyten F P, Geris L
Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Onderwijs en Navorsing 1, Herestraat 49 - PB813, B-3000 Leuven, Belgium; Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, KU Leuven, Onderwijs en Navorsing 1, Herestraat 49 - PB813, B-3000 Leuven, Belgium.
Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Onderwijs en Navorsing 1, Herestraat 49 - PB813, B-3000 Leuven, Belgium; Biomechanics Research Unit, Université de Liège, Chemin des Chevreuils 1 - BAT 52/3, B-4000 Liège, Belgium; Division of Biomechanics and Engineering Design, KU Leuven, Celestijnenlaan 300C, B-3001 Heverlee, Belgium.
Acta Biomater. 2016 Apr 15;35:330-40. doi: 10.1016/j.actbio.2016.02.037. Epub 2016 Feb 27.
Biomaterials are a key ingredient to the success of bone tissue engineering (TE), which focuses on the healing of bone defects by combining scaffolds with cells and/or growth factors. Due to the widely variable material characteristics and patient-specificities, however, current bone TE strategies still suffer from low repeatability and lack of robustness, which hamper clinical translation. Hence, optimal TE construct (i.e. cells and scaffold) characteristics are still under debate. This study aimed to reduce the material-specific variability for cell-based construct design, avoiding trial-and-error, by combining microCT characterization and empirical modelling as an innovative and robust screening approach. Via microCT characterization we have built a quantitative construct library of morphological and compositional properties of six CE approved CaP-based scaffolds (CopiOs®, BioOss™, Integra Mozaik™, chronOS Vivify, MBCP™ and ReproBone™), and of their bone forming capacity and in vivo scaffold degradation when combined with human periosteal derived cells (hPDCs). The empirical model, based on the construct library, allowed identification of the construct characteristics driving optimized bone formation, i.e. (a) the percentage of β-TCP and dibasic calcium phosphate, (b) the concavity of the CaP structure, (c) the average CaP structure thickness and (d) the seeded cell amount (taking into account the seeding efficiency). Additionally, the model allowed to quantitatively predict the bone forming response of different hPDC-CaP scaffold combinations, thus providing input for a more robust design of optimized constructs and avoiding trial-and error. This could improve and facilitate clinical translation.
Biomaterials that support regenerative processes are a key ingredient for successful bone tissue engineering (TE). However, the optimal scaffold structure is still under debate. In this study, we have provided a useful innovative approach for robust screening of potential biomaterials or constructs (i.e. scaffolds seeded with cells and/or growth factors) by combining microCT characterization with empirical modelling. This novel approach leads to a better insight in the scaffold parameters influencing progenitor cell-mediated bone formation. Additionally, it serves as input for more controlled and robust design of optimized CaP-containing bone TE scaffolds. Hence, this novel approach could improve and facilitate clinical translation.
生物材料是骨组织工程(TE)成功的关键要素,骨组织工程旨在通过将支架与细胞和/或生长因子相结合来促进骨缺损的愈合。然而,由于材料特性差异极大且存在患者特异性,当前的骨组织工程策略仍存在重复性低和缺乏稳健性的问题,这阻碍了其临床转化。因此,理想的组织工程构建体(即细胞和支架)特性仍存在争议。本研究旨在通过将显微CT表征与经验建模相结合,作为一种创新且稳健的筛选方法,减少基于细胞的构建体设计中材料特异性的变异性,避免反复试验。通过显微CT表征,我们建立了一个定量构建体库,涵盖六种CE认证的基于磷酸钙(CaP)的支架(CopiOs®、BioOss™、Integra Mozaik™、chronOS Vivify、MBCP™和ReproBone™)的形态和成分特性,以及它们与人类骨膜来源细胞(hPDCs)结合时的骨形成能力和体内支架降解情况。基于该构建体库的经验模型能够确定驱动优化骨形成的构建体特性,即:(a)β - 磷酸三钙和磷酸氢钙的百分比;(b)CaP结构的凹陷度;(c)CaP结构的平均厚度;(d)接种细胞量(考虑接种效率)。此外,该模型能够定量预测不同hPDC - CaP支架组合的骨形成反应,从而为更稳健地设计优化构建体提供依据,避免反复试验。这有助于改进和推动临床转化。
支持再生过程的生物材料是成功的骨组织工程(TE)的关键要素。然而,理想的支架结构仍存在争议。在本研究中,我们提供了一种有用的创新方法,通过将显微CT表征与经验建模相结合,对潜在的生物材料或构建体(即接种了细胞和/或生长因子的支架)进行稳健筛选。这种新方法能够更深入地了解影响祖细胞介导的骨形成的支架参数。此外,它为更可控、更稳健地设计优化的含CaP骨组织工程支架提供了依据。因此,这种新方法有助于改进和推动临床转化。