Suppr超能文献

固体/超流氦界面的热阻。

Thermal resistance at a solid/superfluid helium interface.

机构信息

Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur, LIMSI-CNRS UPR 3251, Université Paris-Sud, Rue John von Neumann, 91405 Orsay, France.

Laboratoire Énergétique Moléculaire et Macroscopique Combustion, EM2C-CNRS UPR 288, École Centrale Paris, Grande voie des Vignes, 92295 Chatenay-Malabry, France.

出版信息

Nat Mater. 2016 May;15(5):512-6. doi: 10.1038/nmat4574. Epub 2016 Feb 29.

Abstract

Kapitza in 1941 discovered that heat flowing across a solid in contact with superfluid helium (<2 K) encounters a strong thermal resistance at the interface. Khalatnikov demonstrated theoretically that this constitutes a general phenomenon related to all interfaces at all temperatures, given the dependence of heat transmission on the acoustic impedance (sound velocity  ×  density) of each medium. For the solid/superfluid interface, the measured transmission of heat is almost one hundred times stronger than the Khalatnikov prediction. This discrepancy could be intuitively attributed to diffuse scattering of phonons at the interface but, despite several attempts, a detailed quantitative comparison between theoretical and experimental findings to explain the occurrence of scattering and its contribution to heat transmission had been lacking. Here we show that when the thermal wavelength λ of phonons of the less dense medium (liquid (4)He) becomes comparable to the r.m.s. surface roughness σ, the heat flux crossing the interface is amplified; in particular when σ ≈ 0.33λ, a spatial resonant mechanism occurs, as proposed by Adamenko and Fuks. We used a silicon single crystal whose surface roughness was controlled and characterized. The thermal boundary resistance measurements were performed from 0.4 to 2 K at different superfluid pressures ranging from saturated vapour pressure (SVP) to above (4)He solidification, to eliminate all hypothetical artefact mechanisms. Our results demonstrate the physical conditions necessary for resonant phonon scattering to occur at all interfaces, and therefore constitute a benchmark in the design of nanoscale devices for heat monitoring.

摘要

1941 年,卡皮察发现,当热量穿过与超流氦(<2 K)接触的固体时,在界面处会遇到很强的热阻。哈利托诺夫从理论上证明,这是一种与所有温度下的所有界面都有关的普遍现象,因为热传递取决于每个介质的声阻抗(声速×密度)。对于固/超流界面,测量到的热传递几乎比哈利托诺夫的预测强一百倍。这种差异可以直观地归因于声子在界面处的扩散散射,但尽管进行了多次尝试,仍缺乏对理论和实验结果进行详细定量比较以解释散射的发生及其对热传递的贡献。在这里,我们表明,当声子的热波长 λ 变得与较密介质(液体 4 He)的均方根表面粗糙度 σ 相当时,穿过界面的热通量会增强;特别是当 σ ≈ 0.33λ 时,会发生阿达门科和富克斯提出的空间共振机制。我们使用了表面粗糙度可以控制和表征的硅单晶。在不同的超流压力下(从饱和蒸气压到高于 4 He 凝固),从 0.4 到 2 K 进行了热边界电阻测量,以消除所有假设的人工制品机制。我们的结果证明了所有界面上发生共振声子散射的必要物理条件,因此构成了纳米级热监测器件设计的基准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验