Voisin Tiphaine, Bourinet Emmanuel, Lory Philippe
Centre National pour la Recherche Scientifique UMR 5203, Département de Physiologie, Institut de Génomique Fonctionnelle, Université de Montpellier, Montpellier, F-34094, France.
Institut National de la Santé et de la Recherche Médicale, U 1191, Montpellier, F-34094, France.
J Physiol. 2016 Jul 1;594(13):3561-74. doi: 10.1113/JP271925. Epub 2016 May 7.
In this study, we describe a new knock-in (KI) mouse model that allows the study of the H191-dependent regulation of T-type Cav3.2 channels. Sensitivity to zinc, nickel and ascorbate of native Cav3.2 channels is significantly impeded in the dorsal root ganglion (DRG) neurons of this KI mouse. Importantly, we describe that this H191-dependent regulation has discrete but significant effects on the excitability properties of D-hair (down-hair) cells, a sub-population of DRG neurons in which Cav3.2 currents prominently regulate excitability. Overall, this study reveals that the native H191-dependent regulation of Cav3.2 channels plays a role in the excitability of Cav3.2-expressing neurons. This animal model will be valuable in addressing the potential in vivo roles of the trace metal and redox modulation of Cav3.2 T-type channels in a wide range of physiological and pathological conditions.
Cav3.2 channels are T-type voltage-gated calcium channels that play important roles in controlling neuronal excitability, particularly in dorsal root ganglion (DRG) neurons where they are involved in touch and pain signalling. Cav3.2 channels are modulated by low concentrations of metal ions (nickel, zinc) and redox agents, which involves the histidine 191 (H191) in the channel's extracellular IS3-IS4 loop. It is hypothesized that this metal/redox modulation would contribute to the tuning of the excitability properties of DRG neurons. However, the precise role of this H191-dependent modulation of Cav3.2 channel remains unresolved. Towards this goal, we have generated a knock-in (KI) mouse carrying the mutation H191Q in the Cav3.2 protein. Electrophysiological studies were performed on a subpopulation of DRG neurons, the D-hair cells, which express large Cav3.2 currents. We describe an impaired sensitivity to zinc, nickel and ascorbate of the T-type current in D-hair neurons from KI mice. Analysis of the action potential and low-threshold calcium spike (LTCS) properties revealed that, contrary to that observed in WT D-hair neurons, a low concentration of zinc and nickel is unable to modulate (1) the rheobase threshold current, (2) the afterdepolarization amplitude, (3) the threshold potential necessary to trigger an LTCS or (4) the LTCS amplitude in D-hair neurons from KI mice. Together, our data demonstrate that this H191-dependent metal/redox regulation of Cav3.2 channels can tune neuronal excitability. This study validates the use of this Cav3.2-H191Q mouse model for further investigations of the physiological roles thought to rely on this Cav3.2 modulation.
在本研究中,我们描述了一种新的敲入(KI)小鼠模型,该模型可用于研究H191依赖性对T型Cav3.2通道的调控。在该KI小鼠的背根神经节(DRG)神经元中,天然Cav3.2通道对锌、镍和抗坏血酸的敏感性显著受到阻碍。重要的是,我们描述了这种H191依赖性调控对D型毛细胞(D-hair cell)的兴奋性特性具有离散但显著的影响,D型毛细胞是DRG神经元的一个亚群,其中Cav3.2电流显著调节兴奋性。总体而言,本研究揭示了天然的H191依赖性对Cav3.2通道的调控在表达Cav3.2的神经元的兴奋性中起作用。这种动物模型对于解决Cav3.2 T型通道的微量金属和氧化还原调节在广泛的生理和病理条件下的潜在体内作用将具有重要价值。
Cav3.2通道是T型电压门控钙通道,在控制神经元兴奋性方面发挥重要作用,特别是在背根神经节(DRG)神经元中,它们参与触觉和疼痛信号传导。Cav3.2通道受到低浓度金属离子(镍、锌)和氧化还原试剂的调节,这涉及通道细胞外IS3-IS4环中的组氨酸191(H191)。据推测,这种金属/氧化还原调节有助于调节DRG神经元的兴奋性特性。然而,这种H191依赖性对Cav3.2通道的调节的确切作用仍未解决。为了实现这一目标,我们构建了一种在Cav3.2蛋白中携带H191Q突变的敲入(KI)小鼠。对表达大量Cav3.2电流的DRG神经元亚群——D型毛细胞进行了电生理研究。我们描述了KI小鼠D型毛神经元中T型电流对锌、镍和抗坏血酸的敏感性受损。对动作电位和低阈值钙峰(LTCS)特性的分析表明,与野生型D型毛神经元中观察到的情况相反,低浓度的锌和镍无法调节(1)基强度阈值电流、(2)去极化后振幅、(3)触发LTCS所需的阈值电位或(4)KI小鼠D型毛神经元中的LTCS振幅。总之,我们的数据表明,这种H191依赖性对Cav3.2通道的金属/氧化还原调节可以调节神经元兴奋性。本研究验证了使用这种Cav3.2-H191Q小鼠模型进一步研究被认为依赖于这种Cav3.2调节的生理作用。